NITSOL: A Newton iterative solver for nonlinear systems

被引:201
作者
Pernice, M [1 ]
Walker, HF
机构
[1] Univ Utah, Ctr High Performance Comp, Salt Lake City, UT 84112 USA
[2] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
关键词
Newton iterative methods; truncated Newton methods; Newton-Krylov methods; inexact Newton methods; Newton's method; forcing terms; iterative linear algebra methods; Krylov subspace methods; GMRES; BiCGSTAB; TFQMR;
D O I
10.1137/S1064827596303843
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a well-developed Newton iterative (truncated Newton) algorithm for solving large-scale nonlinear systems. The framework is an inexact Newton method globalized by backtracking. Trial steps are obtained using one of several Krylov subspace methods. The algorithm is implemented in a Fortran solver called NITSOL that is robust yet easy to use and provides a number of useful options and features. The structure offers the user great flexibility in addressing problem specificity through preconditioning and other means and allows easy adaptation to parallel environments. Features and capabilities are illustrated in numerical experiments.
引用
收藏
页码:302 / 318
页数:17
相关论文
共 33 条
[1]  
Anderson E., 1992, LAPACK User's Guide
[2]   FAST NUMERICAL-SOLUTION OF THE BIHARMONIC DIRICHLET PROBLEM ON RECTANGLES [J].
BJORSTAD, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (01) :59-71
[3]   HYBRID KRYLOV METHODS FOR NONLINEAR-SYSTEMS OF EQUATIONS [J].
BROWN, PN ;
SAAD, Y .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1990, 11 (03) :450-481
[4]   GMRES on (nearly) singular systems [J].
Brown, PN ;
Walker, HF .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1997, 18 (01) :37-51
[5]  
Chan T.F., 1994, Acta Numerica, V3, P61, DOI [DOI 10.1017/S0962492900002427, 10.1017/S0962492900002427]
[6]  
CONN AR, 1992, SPRINGER SER COMPUT, V17
[7]   INEXACT NEWTON METHODS [J].
DEMBO, RS ;
EISENSTAT, SC ;
STEIHAUG, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (02) :400-408
[8]  
DEVAHLDAVIS G, 1983, INT J NUMER METH FL, V3, P249, DOI DOI 10.1002/FLD.1650030305
[9]   GLOBALLY CONVERGENT INEXACT NEWTON METHODS [J].
EISENSTAT, SC ;
WALKER, HF .
SIAM JOURNAL ON OPTIMIZATION, 1994, 4 (02) :393-422
[10]   Choosing the forcing terms in an inexact Newton method [J].
Eisenstat, SC ;
Walker, HF .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (01) :16-32