Nondestructive Nanoscale 3D Elemental Mapping and Analysis of a Solid Oxide Fuel Cell Anode

被引:133
作者
Grew, Kyle N. [1 ]
Chu, Yong S. [2 ]
Yi, Jaemock [2 ]
Peracchio, Aldo A. [1 ]
Izzo, John R., Jr. [1 ]
Hwu, Yeukuang [3 ]
De Carlo, Francesco [2 ]
Chiu, Wilson K. S. [1 ]
机构
[1] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA
[2] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[3] Acad Sinica, Inst Phys, Taipei 115, Taiwan
基金
美国国家科学基金会;
关键词
LATTICE BOLTZMANN-METHOD; MONTE-CARLO SIMULATIONS; RAY COMPUTED-TOMOGRAPHY; 3-DIMENSIONAL RECONSTRUCTION; COMPOSITE ELECTRODES; BOUNDARY-CONDITIONS; GAS-TRANSPORT; SOFC ANODES; DIFFUSION; MICROSTRUCTURE;
D O I
10.1149/1.3355957
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Present solid oxide fuel cells (SOFCs) use complex materials to provide (i) sufficient stability and support, (ii) electronic, ionic, and mass transport, and (iii) electrocatalytic activity. However, there is a limited quantitative understanding of the effect of the SOFC's three dimensional (3D) nano/microstructure on electronic, ionic, and mass-transfer-related losses. Here, a nondestructive tomographic imaging technique at 38.5 nm spatial resolution is used along with numerical models to examine the phase and pore networks within an SOFC anode and to provide insight into the heterogeneous microstructure's contributions to the origins of transport-related losses. The microstructure produces substantial localized structure-induced losses, with approximately 50% of those losses arising from phase cross-sectional diameters of 0.2 mu m or less. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3355957] All rights reserved.
引用
收藏
页码:B783 / B792
页数:10
相关论文
共 69 条
[1]   Electrical properties of Ni/YSZ cermets obtained through combustion synthesis [J].
Anselmi-Tamburini, U ;
Chiodelli, G ;
Arimondi, M ;
Maglia, F ;
Spinolo, G ;
Munir, ZA .
SOLID STATE IONICS, 1998, 110 (1-2) :35-43
[2]   Direct numerical calculation of the kinematic tortuosity of reactive mixture flow in the anode layer of solid oxide fuel cells by the lattice Boltzmann method [J].
Asinari, Pietro ;
Quaglia, Michele Cali ;
von Spakovsky, Michael R. ;
Kasula, Bhavani V. .
JOURNAL OF POWER SOURCES, 2007, 170 (02) :359-375
[3]   Advanced anodes for high-temperature fuel cells [J].
Atkinson, A ;
Barnett, S ;
Gorte, RJ ;
Irvine, JTS ;
Mcevoy, AJ ;
Mogensen, M ;
Singhal, SC ;
Vohs, J .
NATURE MATERIALS, 2004, 3 (01) :17-27
[4]   High-resolution three-dimensional reconstruction: A combined scanning electron microscope and focused ion-beam approach [J].
Bansal, RK ;
Kubis, A ;
Hull, R ;
Fitz-Gerald, JM .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2006, 24 (02) :554-561
[5]   REEVALUATION OF X-RAY ATOMIC ENERGY LEVELS [J].
BEARDEN, JA ;
BURR, AF .
REVIEWS OF MODERN PHYSICS, 1967, 39 (01) :125-&
[6]   Recent advances in materials for fuel cells [J].
Brandon, NP ;
Skinner, S ;
Steele, BCH .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2003, 33 :183-213
[7]   Intermediate temperature solid oxide fuel cells [J].
Brett, Daniel J. L. ;
Atkinson, Alan ;
Brandon, Nigel P. ;
Skinner, Stephen J. .
CHEMICAL SOCIETY REVIEWS, 2008, 37 (08) :1568-1578
[8]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[9]   Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution [J].
Chu, Y. S. ;
Yi, J. M. ;
De Carlo, F. ;
Shen, Q. ;
Lee, Wah-Keat ;
Wu, H. J. ;
Wang, C. L. ;
Wang, J. Y. ;
Liu, C. J. ;
Wang, C. H. ;
Wu, S. R. ;
Chien, C. C. ;
Hwu, Y. ;
Tkachuk, A. ;
Yun, W. ;
Feser, M. ;
Liang, K. S. ;
Yang, C. S. ;
Je, J. H. ;
Margaritondo, G. .
APPLIED PHYSICS LETTERS, 2008, 92 (10)
[10]   Effect of composition on the performance of cermet electrodes. Experimental and theoretical approach [J].
Costamagna, P ;
Panizza, M ;
Cerisola, G ;
Barbucci, A .
ELECTROCHIMICA ACTA, 2002, 47 (07) :1079-1089