Osteoblast autonomous Pi regulation via Pit1 plays a role in bone mineralization

被引:113
作者
Yoshiko, Yuji
Candeliere, G. Antonio
Maeda, Norihiko
Aubin, Jane E.
机构
[1] Univ Toronto, Fac Med, Dept Mol & Med Genet, Toronto, ON M5S 1A8, Canada
[2] Hiroshima Univ, Grad Sch Biomed Sci, Dept Oral Growth & Dev Biol, Minami Ku, Hiroshima 7348553, Japan
关键词
D O I
10.1128/MCB.00104-07
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The complex pathogenesis of mineralization defects seen in inherited and/or acquired hypophosphatemic disorders suggests that local inorganic phosphate (Pi) regulation by osteoblasts may be a rate-limiting step in physiological bone mineralization. To test whether an osteoblast autonomous phosphate regulatory system regulates mineralization, we manipulated well-established in vivo and in vitro models to study mineralization stages separately from cellular proliferation/differentiation stages of osteogenesis. Foscarnet, an inhibitor of NaPi transport, blocked mineralization of osteoid formation in osteoblast cultures and local mineralization after injection over the calvariae of newborn rats. Mineralization was also down- and upregulated, respectively, with under- and overexpression of the type III NaPi transporter Pit1 in osteoblast cultures. Among molecules expressed in osteoblasts and known to be related to Pi handling, stanniocalcin I was identified as an early response gene after foscarnet treatment; it was also regulated by extracellular P-i, and itself increased Pit1 accumulation in both osteoblast cultures and in vivo. These results provide new insights into the functional role of osteoblast autonomous Pi handling in normal bone mineralization and the abnormalities seen in skeletal tissue in hypophosphatemic disorders.
引用
收藏
页码:4465 / 4474
页数:10
相关论文
共 44 条
[1]  
[Anonymous], PRIMER METABOLIC BON
[2]   Inorganic phosphate as a signaling molecule in osteoblast differentiation [J].
Beck, GR .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2003, 90 (02) :234-243
[3]   Phosphate is a specific signal for induction of osteopontin gene expression [J].
Beck, GR ;
Zerler, B ;
Moran, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (15) :8352-8357
[4]   Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities [J].
Beck, L ;
Karaplis, AC ;
Amizuka, N ;
Hewson, AS ;
Ozawa, H ;
Tenenhouse, HS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (09) :5372-5377
[5]   Molecular nanosprings in spider capture-silk threads [J].
Becker, N ;
Oroudjev, E ;
Mutz, S ;
Cleveland, JP ;
Hansma, PK ;
Hayashi, CY ;
Makarov, DE ;
Hansma, HG .
NATURE MATERIALS, 2003, 2 (04) :278-283
[6]   MINERALIZED BONE NODULES FORMED INVITRO FROM ENZYMATICALLY RELEASED RAT CALVARIA CELL-POPULATIONS [J].
BELLOWS, CG ;
AUBIN, JE ;
HEERSCHE, JNM ;
ANTOSZ, ME .
CALCIFIED TISSUE INTERNATIONAL, 1986, 38 (03) :143-154
[7]   INORGANIC-PHOSPHATE ADDED EXOGENOUSLY OR RELEASED FROM BETA-GLYCEROPHOSPHATE INITIATES MINERALIZATION OF OSTEOID NODULES INVITRO [J].
BELLOWS, CG ;
HEERSCHE, JNM ;
AUBIN, JE .
BONE AND MINERAL, 1992, 17 (01) :15-29
[8]   Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent [J].
Berndt, T ;
Craig, TA ;
Bowe, AE ;
Vassiliadis, J ;
Reczek, D ;
Finnegan, R ;
De Beur, SMJ ;
Schiavi, SC ;
Kumar, R .
JOURNAL OF CLINICAL INVESTIGATION, 2003, 112 (05) :785-794
[9]   The murine stanniocalcin 1 gene is not essential for growth and development [J].
Chang, ACM ;
Cha, J ;
Koentgen, F ;
Reddel, RR .
MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (23) :10604-10610
[10]   A NOVEL HUMAN CDNA HIGHLY HOMOLOGOUS TO THE FISH HORMONE STANNIOCALCIN [J].
CHANG, ACM ;
JANOSI, J ;
HULSBEEK, M ;
DEJONG, D ;
JEFFREY, KJ ;
NOBLE, JR ;
REDDEL, RR .
MOLECULAR AND CELLULAR ENDOCRINOLOGY, 1995, 112 (02) :241-247