Structure and thermoelectric characterization of AxBa8-xAl14Si31 (A = Sr, Eu) single crystals

被引:40
作者
Condron, Cathie L.
Kauzlarich, Susan M.
机构
[1] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA
[2] Univ S Florida, Dept Phys, Tampa, FL 33620 USA
关键词
D O I
10.1021/ic062115v
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Single crystals of A(x)Ba(8-x)Al(14)Si(31) (A = Sr, Eu) were grown using a molten Al flux technique. Single-crystal X-ray diffraction confirms that A(x)Ba(8-x)Al(14)Si(31) (A = Sr, Eu) crystallize with the type I clathrate structure, and phase purity was determined with powder X-ray diffraction. Stoichiometry was determined to be Sr0.7Ba7.3Al14Si31 and Eu0.3Ba7.7Al14Si31 by electron microprobe analysis. These A(x)Ba(8-x)Al(14)Si(31) phases can be described as framework-deficient clathrate type I structures with the general formula, A(x)Ba(8-x)Al(y)Si(42-3y/4)[](4-1/4y). DSC measurements indicate that these phases melt congruently at 1413 and 1415 K for Sr0.7Ba7.3Al14Si31 and Eu0.3Ba7.7Al14Si31, respectively. Temperature-dependent resistivity indicates metallic behavior, and the negative Seebeck coefficient indicates transport processes dominated by electrons as carriers. Thermal conductivity of these phases remains low with Sr0.7Ba7.3Al14Si31 having the lowest values.
引用
收藏
页码:2556 / 2562
页数:7
相关论文
共 33 条
[11]   Thermoelectric properties and microstructure of Ba8Al14Si31 and EuBa7Al13Si33 [J].
Condron, Cathie L. ;
Kauzlarich, Susan M. ;
Gascoin, Franck ;
Snyder, G. Jeffery .
CHEMISTRY OF MATERIALS, 2006, 18 (20) :4939-4945
[12]   Crystal structures, Raman spectroscopy, and magnetic properties of Ba7.5Al13Si29 and Eu0.27Ba7.22Al13Si29 [J].
Condron, CL ;
Porter, R ;
Guo, T ;
Kauzlarich, SM .
INORGANIC CHEMISTRY, 2005, 44 (25) :9185-9191
[13]   Why are clathrates good candidates for thermoelectric materials? [J].
Iversen, BB ;
Palmqvist, AEC ;
Cox, DE ;
Nolas, GS ;
Stucky, GD ;
Blake, NP ;
Metiu, H .
JOURNAL OF SOLID STATE CHEMISTRY, 2000, 149 (02) :455-458
[14]   The metal flux:: A preparative tool for the exploration of intermetallic compounds [J].
Kanatzidis, MG ;
Pöttgen, R ;
Jeitschko, W .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (43) :6996-7023
[15]  
KUZNETSOV VL, 1999, INT C THERM 18, P177
[16]   Structural and transport properties of Ba8Ga16SixGe30-x clathrates [J].
Martin, J ;
Erickson, S ;
Nolas, GS ;
Alboni, P ;
Tritt, TM ;
Yang, J .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (04)
[17]   Crystal chemistry and thermoelectric properties of clathrates with rare-earth substitution [J].
Mudryk, Y ;
Rogl, P ;
Paul, C ;
Berger, S ;
Bauer, E ;
Hilscher, G ;
Godart, C ;
Noël, H ;
Saccone, A ;
Ferro, R .
PHYSICA B-CONDENSED MATTER, 2003, 328 (1-2) :44-48
[18]   Thermoelectricity of clathrate ISi and Ge phases [J].
Mudryk, Y ;
Rogl, P ;
Paul, C ;
Berger, S ;
Bauer, E ;
Hilscher, G ;
Godart, C ;
Noël, H .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (34) :7991-8004
[19]   Structure and Raman scattering study on Ba8GaxSi46-x (x=10 and 16) type I clathrates [J].
Nataraj, D ;
Nagao, J .
JOURNAL OF SOLID STATE CHEMISTRY, 2004, 177 (06) :1905-1911
[20]   Semiconductor clathrates: A PGEC system with potential for thermoelectric applications [J].
Nolas, GS .
THERMOELECTRIC MATERIALS 1998 - THE NEXT GENERATION MATERIALS FOR SMALL-SCALE REFRIGERATION AND POWER GENERATION APPLICATIONS, 1999, 545 :435-442