Mechanisms regulating GABAergic inhibitory transmission in the basolateral amygdala: implications for epilepsy and anxiety disorders

被引:67
作者
Aroniadou-Anderjaska, V.
Qashu, F.
Braga, M. F. M.
机构
[1] Uniformed Serv Univ Hlth Sci, Dept Anat Physiol & Genet, Bethesda, MD 20814 USA
[2] Uniformed Serv Univ Hlth Sci, Neurosci Program, Bethesda, MD 20814 USA
关键词
amygdala; GABA release; kainate receptors; alpha(1) adrenoceptors; epilepsy; anxiety disorders;
D O I
10.1007/s00726-006-0415-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The amygdala, a temporal lobe structure that is part of the limbic system, has long been recognized for its central role in emotions and emotional behavior. Pathophysiological alterations in neuronal excitability in the amygdala are characteristic features of certain psychiatric illnesses, such as anxiety disorders and depressive disorders. Furthermore, neuronal excitability in the amygdala, and, in particular, excitability of the basolateral nucleus of the amygdala (BLA) plays a pivotal role in the pathogenesis and symptomatology of temporal lobe epilepsy. Here, we describe two recently discovered mechanisms regulating neuronal excitability in the BLA, by modulating GABAergic inhibitory transmission. One of these mechanisms involves the regulation of GABA release via kainate receptors containing the GluR5 subunit (GluR5KRs). In the rat BLA, GluR5KRs are present on both somatodendritic regions and presynaptic terminals of GABAergic interneurons, and regulate GABA release in an agonist concentration-dependent, bidirectional manner. The relevance of the GluR5KR function to epilepsy is suggested by the findings that GluR5KR agonists can induce epileptic activity, whereas GluR5KR antagonists can prevent it. Further support for an important role of GluR5KRs in epilepsy comes from the findings that antagonism of GluR5KRs is a primary mechanism underlying the antiepileptic properties of the anticonvulsant topiramate. Another mechanism regulating neuronal excitability in the BLA by modulating GABAergic synaptic transmission is the facilitation of GABA release via presynaptic alpha(1A) adrenergic receptors. This mechanism may significantly underlie the antiepileptic properties of norepinephrine. Notably, the alpha(1A) adrenoceptor-mediated facilitation of GABA release is severely impaired by stress. This stress-induced impairment in the noradrenergic facilitation of GABA release in the BLA may underlie the hyperexcitability of the amygdala in certain stress-related affective disorders, and may explain the stress-induced exacerbation of seizure activity in epileptic patients.
引用
收藏
页码:305 / 315
页数:11
相关论文
共 116 条
[1]   Metabolic rate in the right amygdala predicts negative affect in depressed patients [J].
Abercrombie, HC ;
Schaefer, SM ;
Larson, CL ;
Oakes, TR ;
Lindgren, KA ;
Holden, JE ;
Perlman, SB ;
Turski, PA ;
Krahn, DD ;
Benca, RM ;
Davidson, RJ .
NEUROREPORT, 1998, 9 (14) :3301-3307
[2]   An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance [J].
Aston-Jones, G ;
Cohen, JD .
ANNUAL REVIEW OF NEUROSCIENCE, 2005, 28 :403-450
[3]   The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes [J].
Berridge, CW ;
Waterhouse, BD .
BRAIN RESEARCH REVIEWS, 2003, 42 (01) :33-84
[4]   CLONING OF A NOVEL GLUTAMATE RECEPTOR SUBUNIT, GLUR5 - EXPRESSION IN THE NERVOUS-SYSTEM DURING DEVELOPMENT [J].
BETTLER, B ;
BOULTER, J ;
HERMANSBORGMEYER, I ;
OSHEAGREENFIELD, A ;
DENERIS, ES ;
MOLL, C ;
BORGMEYER, U ;
HOLLMANN, M ;
HEINEMANN, S .
NEURON, 1990, 5 (05) :583-595
[5]   Kainate receptors are involved in synaptic plasticity [J].
Bortolotto, ZA ;
Clarke, VRJ ;
Delany, CM ;
Parry, MC ;
Smolders, I ;
Vignes, M ;
Ho, KH ;
Miu, P ;
Brinton, BT ;
Fantaske, R ;
Ogden, A ;
Gates, M ;
Ornstein, PL ;
Lodge, D ;
Bleakman, D ;
Collingridge, GL .
NATURE, 1999, 402 (6759) :297-301
[6]  
Braga AFM, 2004, MOL NEUROBIOL, V30, P127
[7]   Stress impairs α1A adrenoceptor-mediated noradrenergic facilitation of GABAergic transmission in the basolateral amygdala [J].
Braga, MFM ;
Aroniadou-Anderjaska, V ;
Manion, ST ;
Hough, CJ ;
Li, H .
NEUROPSYCHOPHARMACOLOGY, 2004, 29 (01) :45-58
[8]   Bidirectional modulation of GABA release by presynaptic glutamate receptor 5 kainate receptors in the basolateral amygdala [J].
Braga, MFM ;
Aroniadou-Anderjaska, V ;
Xie, JW ;
Li, H .
JOURNAL OF NEUROSCIENCE, 2003, 23 (02) :442-452
[9]   Sex-related impairment of memory for emotional events with β-adrenergic blockade [J].
Cahill, L ;
van Stegeren, A .
NEUROBIOLOGY OF LEARNING AND MEMORY, 2003, 79 (01) :81-88
[10]   Mechanisms of emotional arousal and lasting declarative memory [J].
Cahill, L ;
McGaugh, JL .
TRENDS IN NEUROSCIENCES, 1998, 21 (07) :294-299