Near-field scanning optical microscopy (NSOM) studies of nanoscale polymer ordering in pristine films of poly(9,9-dialkylfluorene)

被引:67
作者
Teetsov, J
Vanden Bout, DA [1 ]
机构
[1] Univ Texas, Dept Chem & Biochem, Austin, TX 78712 USA
[2] Univ Texas, Texas Mat Inst, Austin, TX 78712 USA
关键词
D O I
10.1021/jp0012799
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Near-field scanning optical microscopy (NSOM) is used to characterize nanoscale topographic and fluorescence features of pristine films of the stiff-chain polymer polyfluorene. The pristine films of polyfluorene bearing two hexyl (1) or dodecyl (2) groups at the 9 position were studied. Pristine films appear isotropic using conventional polarized light microscopy. NSOM images show two distinct types of film morphology, the first of which is characterized by 50-150 nm clusters in the topography. These clusters seen in films of 1 and 2 correlate directly with regions of lower fluorescence. The cluster correlated fluorescence (CCF) is unpolarized and has a slightly greater percent contribution from low energy emission than the rest of the polymer film. The larger and more frequent regions of CCF in films of 1 versus films of 2 indicate they are formed due to poor solubility. NSOM images show a second type of morphology that is characterized by 50-500 nm polarized domains denoted as long range order (LRO). These domains are distributed uniformly in pristine films of 1 and 2. Unlike CCF, the topography and fluorescence of LRO do not correlate. A method of NSOM image math is introduced to quantify film anisotropy from simultaneously collected fluorescence images at orthogonal polarizations. The anisotropy of 2 is found to be significantly larger than 1. NSOM images collected at 440 & 600 nm show that intra- and interpolymer emitting species are distributed evenly throughout the film's LRO. Additional polarization images show that intra- and interpolymer fluorescence are polarized along the same axis. The dominance of LRO in 2 and the large interpolymer emission in 2 (as measured in previous studies) implies that the LRO, not the clusters, is responsible for most of the interpolymer emission in these polymer films.
引用
收藏
页码:9378 / 9387
页数:10
相关论文
共 61 条
[1]   Characterization of organic thin film materials with near-field scanning optical microscopy (NSOM) [J].
Barbara, PF ;
Adams, DM ;
O'Connor, DB .
ANNUAL REVIEW OF MATERIALS SCIENCE, 1999, 29 :433-+
[2]   Ultrafast Raman echo measurements of vibrational dephasing and the nature of solvent-solute interactions [J].
Berg, M ;
VandenBout, DA .
ACCOUNTS OF CHEMICAL RESEARCH, 1997, 30 (02) :65-71
[3]   The application of polyfluorenes and related polymers in light emitting diodes [J].
Bernius, M ;
Inbasekaran, M ;
Woo, E ;
Wu, WS ;
Wujkowski, L .
LIGHT-EMITTING DIODES: RESEARCH, MANUFACTURING, AND APPLICATIONS III, 1999, 3621 :93-102
[4]   Theory of diffraction by small holes [J].
Bethe, HA .
PHYSICAL REVIEW, 1944, 66 (7/8) :163-182
[5]   NEAR-FIELD OPTICS - MICROSCOPY, SPECTROSCOPY, AND SURFACE MODIFICATION BEYOND THE DIFFRACTION LIMIT [J].
BETZIG, E ;
TRAUTMAN, JK .
SCIENCE, 1992, 257 (5067) :189-195
[6]   COMBINED SHEAR FORCE AND NEAR-FIELD SCANNING OPTICAL MICROSCOPY [J].
BETZIG, E ;
FINN, PL ;
WEINER, JS .
APPLIED PHYSICS LETTERS, 1992, 60 (20) :2484-2486
[7]   BREAKING THE DIFFRACTION BARRIER - OPTICAL MICROSCOPY ON A NANOMETRIC SCALE [J].
BETZIG, E ;
TRAUTMAN, JK ;
HARRIS, TD ;
WEINER, JS ;
KOSTELAK, RL .
SCIENCE, 1991, 251 (5000) :1468-1470
[8]   EXCIMER EMISSION AND WAVELENGTH CONTROL FROM LIGHT-EMITTING-DIODES BASED ON SIDE-CHAIN POLYMERS [J].
BISBERG, J ;
CUMMING, WJ ;
GAUDIANA, RA ;
HUTCHINSON, KD ;
INGWALL, RT ;
KOLB, ES ;
MEHTA, PG ;
MINNS, RA ;
PETERSEN, CP .
MACROMOLECULES, 1995, 28 (01) :386-389
[9]   Spatially and temporally resolved emission from aggregates in conjugated polymers [J].
Blatchford, JW ;
Gustafson, TL ;
Epstein, AJ ;
VandenBout, DA ;
Kerimo, J ;
Higgins, DA ;
Barbara, PF ;
Fu, DK ;
Swager, TM ;
MacDiarmid, AG .
PHYSICAL REVIEW B, 1996, 54 (06) :R3683-R3686
[10]   Electrical and photoinduced degradation of polyfluorene based films and light-emitting devices [J].
Bliznyuk, VN ;
Carter, SA ;
Scott, JC ;
Klärner, G ;
Miller, RD ;
Miller, DC .
MACROMOLECULES, 1999, 32 (02) :361-369