The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells

被引:801
作者
Revollo, JR [1 ]
Grimm, AA [1 ]
Imai, S [1 ]
机构
[1] Washington Univ, Sch Med, Dept Mol Biol & Pharmacol, St Louis, MO 63110 USA
关键词
D O I
10.1074/jbc.M408388200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent studies have revealed new roles for NAD and its derivatives in transcriptional regulation. The evolutionarily conserved Sir2 protein family requires NAD for its deacetylase activity and regulates a variety of biological processes, such as stress response, differentiation, metabolism, and aging. Despite its absolute requirement for NAD, the regulation of Sir2 function by NAD biosynthesis pathways is poorly understood in mammals. In this study, we determined the kinetics of the NAD biosynthesis mediated by nicotinamide phosphoribosyltransferase (Nampt) and nicotinamide/nicotinic acid mononucleotide adenylyltransferase (Nmnat), and we examined its effects on the transcriptional regulatory function of the mouse Sir2 ortholog, Sir2alpha, in mouse fibroblasts. We found that Nampt was the rate-limiting component in this mammalian NAD biosynthesis pathway. Increased dosage of Nampt, but not Nmnat, increased the total cellular NAD level and enhanced the transcriptional regulatory activity of the catalytic domain of Sir2alpha recruited onto a reporter gene in mouse fibroblasts. Gene expression profiling with oligonucleotide microarrays also demonstrated a significant correlation between the expression profiles of Nampt- and Sir2alpha-overexpressing cells. These findings suggest that NAD biosynthesis mediated by Nampt regulates the function of Sir2alpha and thereby plays an important role in controlling various biological events in mammals.
引用
收藏
页码:50754 / 50763
页数:10
相关论文
共 61 条
  • [1] Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae
    Anderson, RM
    Bitterman, KJ
    Wood, JG
    Medvedik, O
    Sinclair, DA
    [J]. NATURE, 2003, 423 (6936) : 181 - 185
  • [2] Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels
    Anderson, RM
    Bitterman, KJ
    Wood, JG
    Medvedik, O
    Cohen, H
    Lin, SS
    Manchester, JK
    Gordon, JI
    Sinclair, DA
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (21) : 18881 - 18890
  • [3] Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration
    Araki, T
    Sasaki, Y
    Milbrandt, J
    [J]. SCIENCE, 2004, 305 (5686) : 1010 - 1013
  • [4] BERNOFSKY C, 1980, MOL CELL BIOCHEM, V33, P135
  • [5] Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast Sir2 and human SIRT1
    Bitterman, KJ
    Anderson, RM
    Cohen, HY
    Latorre-Esteves, M
    Sinclair, DA
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (47) : 45099 - 45107
  • [6] The Sir2 family of protein deacetylases
    Blander, G
    Guarente, L
    [J]. ANNUAL REVIEW OF BIOCHEMISTRY, 2004, 73 : 417 - 435
  • [7] THE SIR2 GENE FAMILY, CONSERVED FROM BACTERIA TO HUMANS, FUNCTIONS IN SILENCING, CELL-CYCLE PROGRESSION, AND CHROMOSOME STABILITY
    BRACHMANN, CB
    SHERMAN, JM
    DEVINE, SE
    CAMERON, EE
    PILLUS, L
    BOEKE, JD
    [J]. GENES & DEVELOPMENT, 1995, 9 (23) : 2888 - 2902
  • [8] Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
    Brunet, A
    Sweeney, LB
    Sturgill, JF
    Chua, KF
    Greer, PL
    Lin, YX
    Tran, H
    Ross, SE
    Mostoslavsky, R
    Cohen, HY
    Hu, LS
    Cheng, HL
    Jedrychowski, MP
    Gygi, SP
    Sinclair, DA
    Alt, FW
    Greenberg, ME
    [J]. SCIENCE, 2004, 303 (5666) : 2011 - 2015
  • [9] Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase
    Cohen, HY
    Miller, C
    Bitterman, KJ
    Wall, NR
    Hekking, B
    Kessler, B
    Howitz, KT
    Gorospe, M
    de Cabo, R
    Sinclair, DA
    [J]. SCIENCE, 2004, 305 (5682) : 390 - 392
  • [10] Linking chromatin function with metabolic networks:: Sir2 family of NAD+-dependent deacetylases
    Denu, JM
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 2003, 28 (01) : 41 - 48