Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries

被引:444
作者
Zhang, Wenbo [1 ]
Weber, Dominik A. [1 ]
Weigand, Harald [1 ]
Arlt, Tobias [2 ]
Manke, Ingo [2 ]
Schroeder, Daniel [1 ]
Koerver, Raimund [1 ]
Leichtweiss, Thomas [1 ]
Hartmann, Pascal [3 ,4 ]
Zeier, Wolfgang G. [1 ]
Janek, Juergen [1 ,4 ]
机构
[1] Justus Liebig Univ Giessen, Phys Chem Inst, Heinrich Buff Ring 17, D-35392 Giessen, Germany
[2] Helmholtz Zentrum Berlin Mat & Energie GmbH, Hahn Meitner Pl 1, D-14109 Berlin, Germany
[3] BASF SE, D-67056 Ludwigshafen, Germany
[4] Karlsruher Inst Technol, Inst Nanotechnol, BELLA, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
关键词
SSB; all-solid-state batteries; Li10GeP2S12; electrochemical energy storage; solid electrolyte; LI-ION INTERCALATION; IN-SITU; SECONDARY BATTERIES; LICOO2; ELECTRODE; GAS EVOLUTION; LI10GEP2S12; CHALLENGES; STABILITY; CONDUCTOR; INSIGHTS;
D O I
10.1021/acsami.7b01137
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
All-solid-state lithium-ion batteries have the potential to become an important class of next-generation electrochemical energy storage devices. However, for achieving competitive perforMance, a better understanding of the interfacial processes at the electrodes is necessary for optimized electrode compositions to be developed. In this work, the interfacial processes between the solid electrolyte (Li10GeP2S12) and the electrode materials (In/InLi and Li-x CoO2) are monitored using impedance spectroscopy and galvanostatic cycling, showing a large resistance contribution and kinetic hindrance at the metal anode. The effect of different fractions of the solid electrolyte in the composite cathodes on the rate performance is tested. The results demonstrate the necessity of a carefully designed composite microstructure depending on the desired applications of an all-solid-state battery. While a relatively low mass fraction of solid electrolyte is sufficient for high energy density, a higher fraction of solid electrolyte is required for high power density.
引用
收藏
页码:17835 / 17845
页数:11
相关论文
共 52 条
[1]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[2]  
Feldman L. C., 2015, HDB SOLID STATE BATT
[3]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[4]   Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes [J].
Han, Fudong ;
Zhu, Yizhou ;
He, Xingfeng ;
Mo, Yifei ;
Wang, Chunsheng .
ADVANCED ENERGY MATERIALS, 2016, 6 (08)
[5]   A Battery Made from a Single Material [J].
Han, Fudong ;
Gao, Tao ;
Zhu, Yujie ;
Gaskell, Karen J. ;
Wang, Chunsheng .
ADVANCED MATERIALS, 2015, 27 (23) :3473-3483
[6]  
Han XG, 2017, NAT MATER, V16, P572, DOI [10.1038/nmat4821, 10.1038/NMAT4821]
[7]   Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes [J].
Hartmann, Pascal ;
Leichtweiss, Thomas ;
Busche, Martin R. ;
Schneider, Meike ;
Reich, Marisa ;
Sann, Joachim ;
Adelhelm, Philipp ;
Janek, Juergen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (41) :21064-21074
[8]   A structural, spectroscopic and electrochemical study of a lithium ion conducting Li10GeP2S12 solid electrolyte [J].
Hassoun, Jusef ;
Verrelli, Roberta ;
Reale, Priscilla ;
Panero, Stefania ;
Mariotto, Gino ;
Greenbaum, Steven ;
Scrosati, Bruno .
JOURNAL OF POWER SOURCES, 2013, 229 :117-122
[9]   Getting solid [J].
Hu, Yong-Sheng .
NATURE ENERGY, 2016, 1
[10]   In situ investigation of the electrochemical reduction of carbonate electrolyte solutions at graphite electrodes [J].
Imhof, R ;
Novak, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (04) :1081-1087