Controlling photonic structures using optical forces

被引:308
作者
Wiederhecker, Gustavo S. [1 ]
Chen, Long [1 ]
Gondarenko, Alexander [1 ]
Lipson, Michal [1 ]
机构
[1] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
WAVE-GUIDES; CAVITY; RESONANCES; CHIP;
D O I
10.1038/nature08584
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The use of optical forces to manipulate small objects is well known. Applications include the manipulation of living cells by optical tweezers(1) and optical cooling in atomic physics(2). The miniaturization of optical systems ( to the micro and nanoscale) has resulted in very compliant systems with masses of the order of nanograms, rendering them susceptible to optical forces(3-6). Optical forces have been exploited to demonstrate chaotic quivering of microcavities(7), optical cooling of mechanical modes(8-11), actuation of a tapered-fibre waveguide and excitation of the mechanical modes of silicon nano-beams(12,13). Despite recent progress in this field(14-17), it is challenging to manipulate the optical response of photonic structures using optical forces; this is because of the large forces that are required to induce appreciable changes in the geometry of the structure. Here we implement a resonant structure whose optical response can be efficiently statically controlled using relatively weak attractive and repulsive optical forces. We demonstrate a static mechanical deformation of up to 20 nanometres in a silicon nitride structure, using three milliwatts of continuous optical power. Because of the sensitivity of the optical response to this deformation, such optically induced static displacement introduces resonance shifts spanning 80 times the intrinsic resonance linewidth.
引用
收藏
页码:633 / U103
页数:5
相关论文
共 21 条
[1]   Ultralow-dissipation optomechanical resonators on a chip [J].
Anetsberger, G. ;
Riviere, R. ;
Schliesser, A. ;
Arcizet, O. ;
Kippenberg, T. J. .
NATURE PHOTONICS, 2008, 2 (10) :627-633
[2]   Electromagnetic forces in photonic crystals [J].
Antonoyiannakis, MI ;
Pendry, JB .
PHYSICAL REVIEW B, 1999, 60 (04) :2363-2374
[3]   OPTICAL TRAPPING AND MANIPULATION OF VIRUSES AND BACTERIA [J].
ASHKIN, A ;
DZIEDZIC, JM .
SCIENCE, 1987, 235 (4795) :1517-1520
[4]   Squeeze film air damping in MEMS [J].
Bao, Minhang ;
Yang, Heng .
SENSORS AND ACTUATORS A-PHYSICAL, 2007, 136 (01) :3-27
[5]   Chaotic quivering of micron-scaled on-chip resonators excited by centrifugal optical pressure [J].
Carmon, Tal ;
Cross, M. C. ;
Vahala, Kerry J. .
PHYSICAL REVIEW LETTERS, 2007, 98 (16)
[6]  
EICHENFIELD M, 2008, C LAS EL QUANT EL LA
[7]   A picogram- and nanometre-scale photonic-crystal optomechanical cavity [J].
Eichenfield, Matt ;
Camacho, Ryan ;
Chan, Jasper ;
Vahala, Kerry J. ;
Painter, Oskar .
NATURE, 2009, 459 (7246) :550-U79
[8]   COOLING OF GASES BY LASER RADIATION [J].
HANSCH, TW ;
SCHAWLOW, AL .
OPTICS COMMUNICATIONS, 1975, 13 (01) :68-69
[9]   Cavity optomechanics: Back-action at the mesoscale [J].
Kippenberg, T. J. ;
Vahala, K. J. .
SCIENCE, 2008, 321 (5893) :1172-1176
[10]   Cavity opto-mechanics [J].
Kippenberg, Tobias J. ;
Vahala, Kerry J. .
OPTICS EXPRESS, 2007, 15 (25) :17172-17205