Pathway redundancy and protein essentiality revealed in the Saccharomyces cerevisiae interaction networks

被引:71
作者
Ulitsky, Igor [1 ]
Shamir, Ron [1 ]
机构
[1] Tel Aviv Univ, Sch Comp Sci, IL-69978 Tel Aviv, Israel
关键词
essential genes; genetic interactions; pathway analysis; protein interactions; S; cerevisiae;
D O I
10.1038/msb4100144
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The biological interpretation of genetic interactions is a major challenge. Recently, Kelley and Ideker proposed a method to analyze together genetic and physical networks, which explains many of the known genetic interactions as linking different pathways in the physical network. Here, we extend this method and devise novel analytic tools for interpreting genetic interactions in a physical context. Applying these tools on a large-scale Saccharomyces cerevisiae data set, our analysis reveals 140 between-pathway models that explain 3765 genetic interactions, roughly doubling those that were previously explained. Model genes tend to have short mRNA half-lives and many phosphorylation sites, suggesting that their stringent regulation is linked to pathway redundancy. We also identify 'pivot' proteins that have many physical interactions with both pathways in our models, and show that pivots tend to be essential and highly conserved. Our analysis of models and pivots sheds light on the organization of the cellular machinery as well as on the roles of individual proteins.
引用
收藏
页数:7
相关论文
共 39 条
[1]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[2]   An automated method for finding molecular complexes in large protein interaction networks [J].
Bader, GD ;
Hogue, CW .
BMC BIOINFORMATICS, 2003, 4 (1)
[3]   Evolutionary and physiological importance of hub proteins [J].
Batada, Nizar N. ;
Hurst, Laurence D. ;
Tyers, Mike .
PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (07) :748-756
[4]   Identification of two novel components of the human NDC80 kinetochore complex [J].
Bharadwaj, R ;
Qi, W ;
Yu, HT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (13) :13076-13085
[5]   Global analysis of gene function in yeast by quantitative phenotypic profiling [J].
Brown, James A. ;
Sherlock, Gavin ;
Myers, Chad L. ;
Burrows, Nicola M. ;
Deng, Changchun ;
Wu, H. Irene ;
McCann, Kelly E. ;
Troyanskaya, Olga G. ;
Brown, J. Martin .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) :2006.0001
[6]   SGD:: Saccharomyces Genome Database [J].
Cherry, JM ;
Adler, C ;
Ball, C ;
Chervitz, SA ;
Dwight, SS ;
Hester, ET ;
Jia, YK ;
Juvik, G ;
Roe, T ;
Schroeder, M ;
Weng, SA ;
Botstein, D .
NUCLEIC ACIDS RESEARCH, 1998, 26 (01) :73-79
[7]   Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes [J].
De Wulf, P ;
McAinsh, AD ;
Sorger, PK .
GENES & DEVELOPMENT, 2003, 17 (23) :2902-2921
[8]  
Even S., 1979, Graph Algorithms
[9]   Functional profiling of the Saccharomyces cerevisiae genome [J].
Giaever, G ;
Chu, AM ;
Ni, L ;
Connelly, C ;
Riles, L ;
Véronneau, S ;
Dow, S ;
Lucau-Danila, A ;
Anderson, K ;
André, B ;
Arkin, AP ;
Astromoff, A ;
El Bakkoury, M ;
Bangham, R ;
Benito, R ;
Brachat, S ;
Campanaro, S ;
Curtiss, M ;
Davis, K ;
Deutschbauer, A ;
Entian, KD ;
Flaherty, P ;
Foury, F ;
Garfinkel, DJ ;
Gerstein, M ;
Gotte, D ;
Güldener, U ;
Hegemann, JH ;
Hempel, S ;
Herman, Z ;
Jaramillo, DF ;
Kelly, DE ;
Kelly, SL ;
Kötter, P ;
LaBonte, D ;
Lamb, DC ;
Lan, N ;
Liang, H ;
Liao, H ;
Liu, L ;
Luo, CY ;
Lussier, M ;
Mao, R ;
Menard, P ;
Ooi, SL ;
Revuelta, JL ;
Roberts, CJ ;
Rose, M ;
Ross-Macdonald, P ;
Scherens, B .
NATURE, 2002, 418 (6896) :387-391
[10]   Localization of human SMC1 protein at kinetochores [J].
Gregson, HC ;
Van Hooser, AA ;
Ball, AR ;
Brinkley, BR ;
Yokomori, K .
CHROMOSOME RESEARCH, 2002, 10 (04) :267-277