Mutual information and capacity of a linear digital channel

被引:2
作者
Broomhead, DS [1 ]
Sidorov, N [1 ]
机构
[1] Univ Manchester, Dept Math, Manchester M60 1QD, Lancs, England
关键词
D O I
10.1088/0951-7715/17/6/010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyse a simple model of a digital communications channel. This model proves to be closely related to an iterated function system (IFS) related to the well-known Bernoulli convolution.. We derive it from a randomly forced first-order ordinary differential equation. This allows the parameter of the Bernoulli convolution the contraction rate, lambda-to be related to the rate at which symbols. are input to the channel. It is shown that for a channel with equiprobable binary inputs the mutual information between input and output distributions is the stationary measure of the complement of the overlap region of the IFS. We show that the mutual information is Holder continuous with respect to lambda and decreases hyper-exponentially as lambda --> 1. We also study the case of non-equiprobable binary inputs and show that the maximum of the mutual information-the channel capacity-does not always correspond to equiprobable inputs.
引用
收藏
页码:2203 / 2223
页数:21
相关论文
共 28 条
[1]  
Barnsley MF., 1988, Fractals Everywhere
[2]   Digital channels [J].
Broomhead, DS ;
Huke, JP ;
Muldoon, MR .
IEEE 2000 ADAPTIVE SYSTEMS FOR SIGNAL PROCESSING, COMMUNICATIONS, AND CONTROL SYMPOSIUM - PROCEEDINGS, 2000, :123-128
[3]  
BROOMHEAD DS, 2001, P 2 I MATH C MATH SI
[4]  
BROOMHEAD DS, 2004, P R SOC A, V460
[5]  
BROOMHEAD DS, 1998, P 4 I MATH C MATH SI
[6]   Iterated random functions [J].
Diaconis, P ;
Freedman, D .
SIAM REVIEW, 1999, 41 (01) :45-76
[7]   CHARACTERIZATION OF THE UNIQUE EXPANSIONS 1=SIGMA-I=1 INFINITY Q-NI AND RELATED PROBLEMS [J].
ERDOS, P ;
JOO, I ;
KOMORNIK, V .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1990, 118 (03) :377-390
[8]  
ERDOS P, 1991, ACTA MATH HUNG, V58, P333
[9]   On a family of symmetric Bernoulli convolutions [J].
Erdos, P .
AMERICAN JOURNAL OF MATHEMATICS, 1939, 61 :974-976
[10]  
Erdos P., 1992, Ann. Univ. Sci. Budapest. Eotvos Sect. Math., V35, P129