DNA-hemoglobin-multiwalls carbon nanotube hybrid material with sandwich structure: Preparation, characterization, and application in bioelectrochemistry

被引:36
作者
Zhang, Qian
Zhang, Ling
Li, Jinghong [1 ]
机构
[1] Tsing Hua Univ, Dept Chem, Key Lab Bioorgan Phosphorus Chem & Chem Biol, Beijing 100084, Peoples R China
[2] Univ Sci & Technol China, Dept Chem, Anhua 230026, Peoples R China
关键词
D O I
10.1021/jp071551f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel multiwall carbon nanotubes (MWNTs)-based hybrid material with sandwich structure (DNA-Hb-MWNTs) was fabricated by alternative electrostatic assembly of hemoglobin (Hb) and DNA on MWNTs. TEM showed that such a nanocomposite behaved as an obvious core-shell structure. SEM proved the well-preserved 3-D structure of DNA-Hb-MWNTs assembled on an electrode. UV-vis and FTIR spectroscopy were used to monitor the assembly procession and also demonstrated that Hb had been sandwiched into DNA and MWNTs without denaturation. A pair of stable and well-defined redox peaks of Hb with a formal potential of about -0.298 V (vs Ag/AgCl) in a pH 6.0 phosphate buffer solution (PBS) were obtained at the DNA-Hb-MWNTs nanocomposite film-modified glassy carbon (GC) electrode (DNA-Hb-MWNT/GC electrode). Compared with the Hb-MWNTs/GC electrode, the DNA-Hb-MWNTs/GC electrode exhibited enhanced faradic current response, and the portion of the electroactive proteins had been greatly improved. Furthermore, the modified electrode also displayed good sensitivity, wide linear range, and long-term stability to the detection of hydrogen peroxide. Such an organized multicomponent biosensor platform may find wide potential applications in biosensors, biocatalysis, biomedical devices, and bioelectronics.
引用
收藏
页码:8655 / 8660
页数:6
相关论文
共 33 条
[1]   Nanotubes from carbon [J].
Ajayan, PM .
CHEMICAL REVIEWS, 1999, 99 (07) :1787-1799
[2]   DIRECT ELECTROCHEMISTRY OF REDOX PROTEINS [J].
ARMSTRONG, FA ;
HILL, HAO ;
WALTON, NJ .
ACCOUNTS OF CHEMICAL RESEARCH, 1988, 21 (11) :407-413
[3]   Increasing protein stability through control of the nanoscale environment [J].
Asuri, Prashanth ;
Karajanagi, Sandeep S. ;
Yang, Hoichang ;
Yim, Tae-Jin ;
Kane, Ravi S. ;
Dordick, Jonathan S. .
LANGMUIR, 2006, 22 (13) :5833-5836
[4]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[5]   Protein/DNA/inorganic materials:: DNA binding to layered α-zirconium phosphate enhances bound protein structure and activity [J].
Bhambhani, A ;
Kumar, CV .
ADVANCED MATERIALS, 2006, 18 (07) :939-+
[6]   DNA-modified core-shell Ag/Au nanoparticles [J].
Cao, YW ;
Jin, R ;
Mirkin, CA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (32) :7961-7962
[7]   Enzymatic fabrication of DNA nanostructures: Extension of a self-assembled oligonucleotide monolayer on gold arrays [J].
Chow, DC ;
Lee, WK ;
Zauscher, S ;
Chilkoti, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (41) :14122-14123
[8]   Chemical and biochemical sensing with modified single walled carbon nanotubes [J].
Davis, JJ ;
Coleman, KS ;
Azamian, BR ;
Bagshaw, CB ;
Green, MLH .
CHEMISTRY-A EUROPEAN JOURNAL, 2003, 9 (16) :3732-3739
[9]   Protein electrochemistry using aligned carbon nanotube arrays [J].
Gooding, JJ ;
Wibowo, R ;
Liu, JQ ;
Yang, WR ;
Losic, D ;
Orbons, S ;
Mearns, FJ ;
Shapter, JG ;
Hibbert, DB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (30) :9006-9007
[10]   Novel three-dimensional electrodes: Electrochemical properties of carbon nanotube ensembles [J].
Li, J ;
Cassell, A ;
Delzeit, L ;
Han, J ;
Meyyappan, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (36) :9299-9305