共 39 条
All-atom Monte Carlo simulation of GCAA RNA folding
被引:20
作者:
Nivón, LG
Shakhnovich, EI
机构:
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[2] Harvard Univ, Program Biophys, Cambridge, MA 02138 USA
关键词:
RNA folding;
tetraloop;
all-atom Monte Carlo;
folding intermediate;
D O I:
10.1016/j.jmb.2004.09.041
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
We report a detailed all-atom simulation of the folding of the GCAA RNA tetraloop. The GCAA tetraloop motif is a very common and thermodynamically stable secondary structure in natural RNAs. We use our simulation methods to study the folding behavior of a 12-base GCAA 2 tetraloop structure with a four-base helix adjacent to the tetraloop proper. We implement an all-atom Monte Carlo (MC) simulation of RNA structural dynamics using a Go potential. Molecular dynamics (MD) simulation of RNA and protein has realistic energetics and sterics, but is extremely expensive in terms of computational time. By coarsely treating noncovalent energetics, but retaining all-atom sterics and entropic effects, all-atom MC techniques are a useful method for the study of protein and now RNA. We observe a sharp folding transition for this structure, and in simulations at room temperature the state histogram shows three distinct minima: an unfolded state (U), a more narrow intermediated state (I), and a narrow folded state (F). The intermediate consists primarily of structures with the GCAA loop and some helix hydrogen bonds formed. Repeated kinetic folding simulations reveal that the number of helix base-pairs forms a simple 1D reaction coordinate for the I --> N transition. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:29 / 45
页数:17
相关论文