Image formation in fluorescence coherence-gated imaging through scattering media

被引:6
作者
Bilenca, A.
Lasser, T.
Ozcan, A.
Leitgeb, R. A.
Bouma, B. E.
Tearney, G. J.
机构
[1] Harvard Univ, Sch Med, Massachusetts Gen Hosp, Boston, MA 02114 USA
[2] Massachusetts Gen Hosp, Wellman Ctr Photomed, Boston, MA 02114 USA
[3] Massachusetts Gen Hosp, Dept Pathol, Boston, MA 02114 USA
[4] Ecole Polytech Fed Lausanne, Lab Opt Biomed, CH-1015 Lausanne, Switzerland
[5] Med Univ Vienna, Ctr Biomed Engn & Phys, A-1090 Vienna, Austria
来源
OPTICS EXPRESS | 2007年 / 15卷 / 06期
关键词
D O I
10.1364/OE.15.002810
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recently, we have experimentally demonstrated a new form of cross-sectional, coherence-gated fluorescence imaging referred to as SDFCT ('spectral-domain fluorescence coherence tomography'). Imaging in SD-FCT is accomplished by spectrally detecting self-interference of the spontaneous emission of fluorophores, thereby providing depth-resolved information on the axial positions of fluorescent probes. Here, we present a theoretical investigation of the factors affecting the detected SD-FCT signal through scattering media. An imaging equation for SD-FCT is derived that includes the effects of defocusing, numerical-aperture, and the optical properties of the medium. A comparison between the optical sectioning capabilities of SD-FCT and confocal microscopy is also presented. Our results suggest that coherence gating in fluorescence imaging may provide an improved approach for depth-resolved imaging of fluorescently labeled samples; high axial resolution (a few microns) can be achieved with low numerical apertures (NA < 0.09) while maintaining a large depth of field (a few hundreds of microns) in a relatively low scattering medium (6 mean free paths), whereas moderate NA's can be used to enhance depth selectivity in more highly scattering biological samples. (c) 2007 Optical Society of America.
引用
收藏
页码:2810 / 2821
页数:12
相关论文
共 14 条
[1]   High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging [J].
Aguirre, AD ;
Hsiung, P ;
Ko, TH ;
Hartl, I ;
Fujimoto, JG .
OPTICS LETTERS, 2003, 28 (21) :2064-2066
[2]   Full-field optical coherence microscopy [J].
Beaurepaire, E ;
Boccara, AC ;
Lebec, M ;
Blanchot, L ;
Saint-Jalmes, H .
OPTICS LETTERS, 1998, 23 (04) :244-246
[3]   Fluorescence coherence tomography [J].
Bilenca, A. ;
Ozcan, A. ;
Bouma, B. ;
Tearney, G. .
OPTICS EXPRESS, 2006, 14 (16) :7134-7143
[4]   Multicanonical Monte-Carlo simulations of light propagation in biological media [J].
Bilenca, A ;
Desjardins, A ;
Bouma, BE ;
Tearney, GJ .
OPTICS EXPRESS, 2005, 13 (24) :9822-9833
[5]  
Gu M., 1999, ADV OPTICAL IMAGING
[6]   PROPERTIES OF A 4PI CONFOCAL FLUORESCENCE MICROSCOPE [J].
HELL, S ;
STELZER, EHK .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1992, 9 (12) :2159-2166
[7]   OPTICAL COHERENCE TOMOGRAPHY [J].
HUANG, D ;
SWANSON, EA ;
LIN, CP ;
SCHUMAN, JS ;
STINSON, WG ;
CHANG, W ;
HEE, MR ;
FLOTTE, T ;
GREGORY, K ;
PULIAFITO, CA ;
FUJIMOTO, JG .
SCIENCE, 1991, 254 (5035) :1178-1181
[8]   OPTICAL COHERENCE MICROSCOPY IN SCATTERING MEDIA [J].
IZATT, JA ;
HEE, MR ;
OWEN, GM ;
SWANSON, EA ;
FUJIMOTO, JG .
OPTICS LETTERS, 1994, 19 (08) :590-592
[9]  
Kempe M, 1996, J MOD OPTIC, V43, P2189, DOI 10.1080/09500349608232879
[10]   Performance of fourier domain vs. time domain optical coherence tomography [J].
Leitgeb, R ;
Hitzenberger, CK ;
Fercher, AF .
OPTICS EXPRESS, 2003, 11 (08) :889-894