Statistical properties of eigenvalues for an operating quantum computer with static imperfections

被引:9
作者
Benenti, G
Casati, G
Montangero, S
Shepelyansky, DL
机构
[1] Univ Insubria, Int Ctr Study Dynam Syst, I-22100 Como, Italy
[2] Ist Nazl Fis Mat, Unita Como, I-22100 Como, Italy
[3] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy
[4] Univ Toulouse 3, Phys Quant Lab, F-31062 Toulouse 4, France
关键词
D O I
10.1140/epjd/e2002-00241-9
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the transition to quantum chaos, induced by static imperfections, for an operating quantum computer that simulates efficiently a dynamical quantum system, the sawtooth map. For the different dynamical regimes of the map, we discuss the quantum chaos border induced by static imperfections by analyzing the statistical properties of the quantum computer eigenvalues. For small imperfection strengths the level spacing statistics is close to the case of quasi-integrable systems while above the border it is described by the random matrix theory. We have found that the border drops exponentially with the number of qubits, both in the ergodic and quasi-integrable dynamical regimes of the map characterized by a complex phase space structure. On the contrary, the regime with integrable map dynamics remains more stable against static imperfections since in this case the border drops only algebraically with the number of qubits.
引用
收藏
页码:285 / 293
页数:9
相关论文
共 34 条
[1]   ONSET OF CHAOS IN RAPIDLY ROTATING NUCLEI [J].
ABERG, S .
PHYSICAL REVIEW LETTERS, 1990, 64 (26) :3119-3122
[2]  
[Anonymous], 2009, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[3]   Efficient quantum computing of complex dynamics [J].
Benenti, G ;
Casati, G ;
Montangero, S ;
Shepelyansky, DL .
PHYSICAL REVIEW LETTERS, 2001, 87 (22) :227901-227901
[4]   Eigenstates of an operating quantum computer: hypersensitivity to static imperfections [J].
Benenti, G ;
Casati, G ;
Montangero, S ;
Shepelyansky, DL .
EUROPEAN PHYSICAL JOURNAL D, 2002, 20 (02) :293-296
[5]   SEMICLASSICAL LEVEL SPACINGS WHEN REGULAR AND CHAOTIC ORBITS COEXIST [J].
BERRY, MV ;
ROBNIK, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (12) :2413-2421
[6]  
BOHIGAS O, 1991, LES HOUCHES LECT SER, V52
[7]   Diffusion and localization in chaotic billiards [J].
Borgonovi, F ;
Casati, G ;
Li, BW .
PHYSICAL REVIEW LETTERS, 1996, 77 (23) :4744-4747
[8]   Localization in discontinuous quantum systems [J].
Borgonovi, F .
PHYSICAL REVIEW LETTERS, 1998, 80 (21) :4653-4656
[9]   Quantum chaos and quantum algorithms [J].
Braun, D .
PHYSICAL REVIEW A, 2002, 65 (04) :6
[10]   Quantum localization and cantori in the stadium billiard [J].
Casati, G ;
Prosen, T .
PHYSICAL REVIEW E, 1999, 59 (03) :R2516-R2519