Eigenstates of an operating quantum computer: hypersensitivity to static imperfections

被引:22
作者
Benenti, G
Casati, G
Montangero, S
Shepelyansky, DL
机构
[1] Univ Insubria, Int Ctr Study Dynam Syst, I-22100 Como, Italy
[2] Ist Nazl Fis Mat, Unita Como, I-22100 Como, Italy
[3] Ist Nazl Fis Nucl, Sezione Milano, I-20133 Milan, Italy
[4] Univ Toulouse 3, UMR 5626 CNRS, Phys Quant Lab, F-31062 Toulouse 4, France
关键词
D O I
10.1140/epjd/e2002-00127-x
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the properties of eigenstates of an operating quantum computer which simulates the dynamical evolution in the regime of quantum chaos. Even if the quantum algorithm is polynomial in number of qubits n(q), it is shown that the ideal eigenstates become mixed and strongly modified by static imperfections above a certain threshold which drops exponentially with nq. Above this threshold the quantum eigenstate entropy grows linearly with n(q) but the computation remains reliable during a time scale which is polynomial in the imperfection strength and in n(q).
引用
收藏
页码:293 / 296
页数:4
相关论文
共 26 条
[1]  
[Anonymous], 2009, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[2]   Efficient quantum computing of complex dynamics [J].
Benenti, G ;
Casati, G ;
Montangero, S ;
Shepelyansky, DL .
PHYSICAL REVIEW LETTERS, 2001, 87 (22) :227901-227901
[3]   Emergence of Fermi-Dirac thermalization in the quantum computer core [J].
Benenti, G ;
Casati, G ;
Shepelyansky, DL .
EUROPEAN PHYSICAL JOURNAL D, 2001, 17 (02) :265-272
[4]   Sensitivity of wave field evolution and manifold stability in chaotic systems [J].
Cerruti, NR ;
Tomsovic, S .
PHYSICAL REVIEW LETTERS, 2002, 88 (05) :4-541034
[5]   QUANTUM COMPUTATIONS WITH COLD TRAPPED IONS [J].
CIRAC, JI ;
ZOLLER, P .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :4091-4094
[6]   Quantum computation and Shor's factoring algorithm [J].
Ekert, A ;
Jozsa, R .
REVIEWS OF MODERN PHYSICS, 1996, 68 (03) :733-753
[7]   SIMULATING PHYSICS WITH COMPUTERS [J].
FEYNMAN, RP .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (6-7) :467-488
[8]   Time dynamics in chaotic many-body systems: Can chaos destroy a quantum computer? [J].
Flambaum, VV .
AUSTRALIAN JOURNAL OF PHYSICS, 2000, 53 (04) :489-497
[9]   Emergence of quantum chaos in the quantum computes core and how to manage it [J].
Georgeot, B ;
Shepelyansky, DL .
PHYSICAL REVIEW E, 2000, 62 (05) :6366-6375
[10]   Exponential gain in quantum computing of quantum chaos and localization [J].
Georgeot, B ;
Shepelyansky, DL .
PHYSICAL REVIEW LETTERS, 2001, 86 (13) :2890-2893