Deep MRI brain extraction: A 3D convolutional neural network for skull stripping

被引:318
作者
Kleesiek, Jens [1 ,2 ,3 ,4 ]
Urban, Gregor [1 ]
Hubert, Alexander [1 ]
Schwarz, Daniel [1 ]
Maier-Hein, Klaus [2 ]
Bendszus, Martin [1 ]
Biller, Armin [1 ,4 ]
机构
[1] Univ Heidelberg Hosp, MDMI Lab, Div Neuroradiol, Heidelberg, Germany
[2] German Canc Res Ctr, Jr Grp Med Image Comp, Heidelberg, Germany
[3] Heidelberg Univ HCI IWR, Heidelberg, Germany
[4] German Canc Res Ctr, Div Radiol, Heidelberg, Germany
关键词
MRI; Brain extraction; Brain mask; Skull stripping; Deep learning; Convolutional networks; REGISTRATION; IMAGES; SEGMENTATION; VALIDATION; ALGORITHM; ACCURACY; ROBUST;
D O I
10.1016/j.neuroimage.2016.01.024
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Brain extraction from magnetic resonance imaging (MRI) is crucial for many neuroimaging workflows. Current methods demonstrate good results on non-enhanced T1-weighted images, but struggle when confronted with other modalities and pathologically altered tissue. In this paper we present a 3D convolutional deep learning architecture to address these shortcomings. In contrast to existing methods, we are not limited to non-enhanced T1w images. When trained appropriately, our approach handles an arbitrary number of modalities including contrast-enhanced scans. Its applicability to MRI data, comprising four channels: non-enhanced and contrast-enhanced T1w, T2w and FLAIR contrasts, is demonstrated on a challenging clinical data set containing brain tumors (N = 53), where our approach significantly outperforms six commonly used tools with a mean Dice score of 95.19. Further, the proposed method at least matches state-of-the-art performance as demonstrated on three publicly available data sets: IBSR, LPBA40 and OASIS, totaling N=135 volumes. For the IBSR (96.32) and LPBA40 (96.96) data set the convolutional neuronal network (CNN) obtains the highest average Dice scores, albeit not being significantly different from the second best performing method. For the OASIS data the second best Dice (95.02) results are achieved, with no statistical difference in comparison to the best performing tool. For all data sets the highest average specificity measures are evaluated, whereas the sensitivity displays about average results. Adjusting the cut-off threshold for generating the binary masks from the CNN's probability output can be used to increase the sensitivity of the method. Of course, this comes at the cost of a decreased specificity and has to be decided application specific. Using an optimized GPU implementation predictions can be achieved in less than one minute. The proposed method may prove useful for large-scale studies and clinical trials. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:460 / 469
页数:10
相关论文
共 50 条
[11]   BEaST: Brain extraction based on nonlocal segmentation technique [J].
Eskildsen, Simon F. ;
Coupe, Pierrick ;
Fonov, Vladimir ;
Manjon, Jose V. ;
Leung, Kelvin K. ;
Guizard, Nicolas ;
Wassef, Shafik N. ;
Ostergaard, Lasse Riis ;
Collins, D. Louis .
NEUROIMAGE, 2012, 59 (03) :2362-2373
[12]   3D Slicer as an image computing platform for the Quantitative Imaging Network [J].
Fedorov, Andriy ;
Beichel, Reinhard ;
Kalpathy-Cramer, Jayashree ;
Finet, Julien ;
Fillion-Robin, Jean-Christophe ;
Pujol, Sonia ;
Bauer, Christian ;
Jennings, Dominique ;
Fennessy, Fiona ;
Sonka, Milan ;
Buatti, John ;
Aylward, Stephen ;
Miller, James V. ;
Pieper, Steve ;
Kikinis, Ron .
MAGNETIC RESONANCE IMAGING, 2012, 30 (09) :1323-1341
[13]   Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: Effects of diagnosis, bias correction, and slice location [J].
Fennema-Notestine, C ;
Ozyurt, IB ;
Clark, CP ;
Morris, S ;
Bischoff-Grethe, A ;
Bondi, MW ;
Jernigan, TL ;
Fischl, B ;
Segonne, F ;
Shattuck, DW ;
Leahy, RM ;
Rex, DE ;
Toga, AW ;
Zou, KH ;
Birn, M ;
Brown, GG .
HUMAN BRAIN MAPPING, 2006, 27 (02) :99-113
[14]  
Fischl B, 1999, HUM BRAIN MAPP, V8, P272, DOI 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO
[15]  
2-4
[16]   FreeSurfer [J].
Fischl, Bruce .
NEUROIMAGE, 2012, 62 (02) :774-781
[17]   An accurate skull stripping method based on simplex meshes and histogram analysis for magnetic resonance images [J].
Galdames, Francisco J. ;
Jaillet, Fabrice ;
Perez, Claudio A. .
JOURNAL OF NEUROSCIENCE METHODS, 2012, 206 (02) :103-119
[18]  
Grabner G, 2006, LECT NOTES COMPUT SC, V4191, P58
[19]   Guided Image Filtering [J].
He, Kaiming ;
Sun, Jian ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (06) :1397-1409
[20]   Robust Brain Extraction Across Datasets and Comparison With Publicly Available Methods [J].
Iglesias, Juan Eugenio ;
Liu, Cheng-Yi ;
Thompson, Paul M. ;
Tu, Zhuowen .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (09) :1617-1634