Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting

被引:206
作者
Goldberg, Gregory W. [1 ]
Jiang, Wenyan [1 ]
Bikard, David [1 ]
Marraffini, Luciano A. [1 ]
机构
[1] Rockefeller Univ, Bacteriol Lab, New York, NY 10065 USA
基金
美国国家卫生研究院;
关键词
STAPHYLOCOCCUS-AUREUS; ANTIVIRAL DEFENSE; IMMUNITY; RNA; INTERFERENCE; COMPLEX; SYSTEMS; DNA; SEQUENCE; PROTEIN;
D O I
10.1038/nature13637
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A fundamental feature of immune systems is the ability to distinguish pathogenic from self and commensal elements, and to attack the former but tolerate the latter(1). Prokaryotic CRISPR-Cas immune systems defend against phage infection byusing Cas nucleases and small RNA guides that specify one or more target sites for cleavage of the viral genome(2,3). Temperate phages include viruses that can integrate into the bacterial chromosome, and they can carry genes that provide a fitness advantage to the lysogenic host(4,5). However, CRISPR-Cas targeting that relies strictly on DNA sequence recognition provides indiscriminate immunity both to lytic and lysogenic infection by temperate phages(6)-compromising the genetic stability of these potentially beneficial elements altogether. Here we show that the Staphylococcus epidermidis CRISPR-Cas system can prevent lytic infection but tolerate lysogenization by temperate phages. Conditional tolerance is achieved through transcription-dependent DNA targeting, and ensures that targeting is resumed upon induction of the prophage lytic cycle. Our results provide evidence for the functional divergence of CRISPR-Cas systems and highlight the importance of targeting mechanism diversity. In addition, they extend the concept of 'tolerance to non-self' to the prokaryotic branch of adaptive immunity.
引用
收藏
页码:633 / +
页数:18
相关论文
共 37 条
[1]   Allelic replacement in Staphylococcus aureus with inducible counter-selection [J].
Bae, T ;
Schneewind, O .
PLASMID, 2006, 55 (01) :58-63
[2]   Prophages of Staphylococcus aureus Newman and their contribution to virulence [J].
Bae, Taeok ;
Baba, Tadashi ;
Hiramatsu, Keiichi ;
Schneewind, Olaf .
MOLECULAR MICROBIOLOGY, 2006, 62 (04) :1035-1047
[3]   CRISPR-Cas systems and RNA-guided interference [J].
Barrangou, Rodolphe .
WILEY INTERDISCIPLINARY REVIEWS-RNA, 2013, 4 (03) :267-278
[4]   Role of the Microbiota in Immunity and Inflammation [J].
Belkaid, Yasmine ;
Hand, Timothy W. .
CELL, 2014, 157 (01) :121-141
[5]   CRISPR Interference Can Prevent Natural Transformation and Virulence Acquisition during In Vivo Bacterial Infection [J].
Bikard, David ;
Hatoum-Aslan, Asma ;
Mucida, Daniel ;
Marraffini, Luciano A. .
CELL HOST & MICROBE, 2012, 12 (02) :177-186
[6]   Small CRISPR RNAs guide antiviral defense in prokaryotes [J].
Brouns, Stan J. J. ;
Jore, Matthijs M. ;
Lundgren, Magnus ;
Westra, Edze R. ;
Slijkhuis, Rik J. H. ;
Snijders, Ambrosius P. L. ;
Dickman, Mark J. ;
Makarova, Kira S. ;
Koonin, Eugene V. ;
van der Oost, John .
SCIENCE, 2008, 321 (5891) :960-964
[7]   Phages and the evolution of bacterial pathogens:: From genomic rearrangements to lysogenic conversion [J].
Brüssow, H ;
Canchaya, C ;
Hardt, WD .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2004, 68 (03) :560-+
[8]   Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes [J].
Carte, Jason ;
Wang, Ruiying ;
Li, Hong ;
Terns, Rebecca M. ;
Terns, Michael P. .
GENES & DEVELOPMENT, 2008, 22 (24) :3489-3496
[9]  
Cumby Nichole, 2012, Bacteriophage, V2, P225
[10]   A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus [J].
Deng, Ling ;
Garrett, Roger A. ;
Shah, Shiraz A. ;
Peng, Xu ;
She, Qunxin .
MOLECULAR MICROBIOLOGY, 2013, 87 (05) :1088-1099