The lifting scheme: A construction of second generation wavelets

被引:1255
作者
Sweldens, W [1 ]
机构
[1] AT&T Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
关键词
wavelet; multiresolution; second generation wavelet; lifting scheme;
D O I
10.1137/S0036141095289051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the lifting scheme, a simple construction of second generation wavelets; these are wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads to a faster, in-place calculation of the wavelet transform. Several examples are included.
引用
收藏
页码:511 / 546
页数:36
相关论文
共 116 条
[1]  
ABGRALL R, UNPUB SIAM J NUMER A
[2]   DISCRETE SPLINE FILTERS FOR MULTIRESOLUTIONS AND WAVELETS OF L(2) [J].
ALDROUBI, A ;
EDEN, M ;
UNSER, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (05) :1412-1432
[3]   FAMILIES OF MULTIRESOLUTION AND WAVELET SPACES WITH OPTIMAL PROPERTIES [J].
ALDROUBI, A ;
UNSER, M .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1993, 14 (5-6) :417-446
[4]   WAVELET-LIKE BASES FOR THE FAST SOLUTION OF 2ND-KIND INTEGRAL-EQUATIONS [J].
ALPERT, B ;
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (01) :159-184
[5]  
Alpert B. K., 1992, WAVELETS TUTORIAL TH, V2, P181
[6]   A CLASS OF BASES IN L2 FOR THE SPARSE REPRESENTATION OF INTEGRAL-OPERATORS [J].
ALPERT, BK .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (01) :246-262
[7]  
AMELLAOUI A, UNPUB ONDELETTES SPL
[8]  
ANDERSSON L, 1993, WAVELETS MATH APPL, P525
[9]  
Andersson L, 1993, RECENT ADV WAVELET A, P1
[10]  
[Anonymous], ACM SIGGRARH COURSE