The lifting scheme: A construction of second generation wavelets

被引:1255
作者
Sweldens, W [1 ]
机构
[1] AT&T Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
关键词
wavelet; multiresolution; second generation wavelet; lifting scheme;
D O I
10.1137/S0036141095289051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the lifting scheme, a simple construction of second generation wavelets; these are wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads to a faster, in-place calculation of the wavelet transform. Several examples are included.
引用
收藏
页码:511 / 546
页数:36
相关论文
共 116 条
[51]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[52]  
DAUBECHIES I, 1992, CBMS NSF REGIONAL C, V61
[53]  
DAUBECHIES I, IN PRESS J FOURIER A
[54]  
DENG B, 1993, P SOC PHOTO-OPT INS, V2034, P266, DOI 10.1117/12.162069
[55]   SYMMETRIC ITERATIVE INTERPOLATION PROCESSES [J].
DESLAURIERS, G ;
DUBUC, S .
CONSTRUCTIVE APPROXIMATION, 1989, 5 (01) :49-68
[56]  
Deslauriers G., 1987, FRACTALS DIMENSIONS, P44
[57]  
Donoho D. L., 1993, Applied and Computational Harmonic Analysis, V1, P100, DOI 10.1006/acha.1993.1008
[58]  
Donoho DavidL., 1992, Interpolating Wavelet Transforms
[59]  
DONOHO DL, 1994, MINIMUM ENTROPY SEGM
[60]  
DONOHO DL, 1993, RECENT ADV WAVELET A, P259