The lifting scheme: A construction of second generation wavelets

被引:1255
作者
Sweldens, W [1 ]
机构
[1] AT&T Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
关键词
wavelet; multiresolution; second generation wavelet; lifting scheme;
D O I
10.1137/S0036141095289051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the lifting scheme, a simple construction of second generation wavelets; these are wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads to a faster, in-place calculation of the wavelet transform. Several examples are included.
引用
收藏
页码:511 / 546
页数:36
相关论文
共 116 条
[11]  
AUSCHER P, 1991, CR ACAD SCI I-MATH, V313, P63
[12]  
AUSCHER P, 1992, WAVELETS TUTORIAL TH, P217
[13]  
Auscher P., 1989, REV MAT IBEROAM, V5, P139, DOI [10.4171/RMI/89, DOI 10.4171/RMI/89]
[14]   A BLOCK SPIN CONSTRUCTION OF ONDELETTES .1. LEMARIE FUNCTIONS [J].
BATTLE, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 110 (04) :601-615
[15]  
BENEDETTO JJ, 1993, WAVELETS MATH APPL
[16]   SPLINE PREWAVELETS FOR NONUNIFORM KNOTS [J].
BUHMANN, MD ;
MICCHELLI, CA .
NUMERISCHE MATHEMATIK, 1992, 61 (04) :455-474
[17]  
CALDERBANK R, IN PRESS APPL COMPUT
[18]   Local decomposition of refinable spaces and wavelets [J].
Carnicer, JM ;
Dahmen, W ;
Pena, JM .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1996, 3 (02) :127-153
[19]  
Chui C.K., 1992, An introduction to wavelets, V1, DOI DOI 10.1109/99.388960
[20]   A CARDINAL SPLINE APPROACH TO WAVELETS [J].
CHUI, CK ;
WANG, JZ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 113 (03) :785-793