A tool for semiglobal stabilization of uncertain non-minimum-phase nonlinear systems via output feedback

被引:142
作者
Isidori, A [1 ]
机构
[1] Washington Univ, Dept Syst Sci & Math, St Louis, MO 63130 USA
[2] Univ Rome La Sapienza, Dipartimento Informat & Sistemist, I-00184 Rome, Italy
基金
美国国家科学基金会;
关键词
output feedback; robust stabilization; unstable zero-dynamics;
D O I
10.1109/TAC.2000.880972
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The purpose of this paper is to present a simple design method by means of which it is possible to robustly stabilize, using output feedback, a significant class of uncertain nonlinear systems whose zero dynamics are unstable. The proposed procedure leads to the construction of a dynamic controller yielding robust, semiglobal practical stability.
引用
收藏
页码:1817 / 1827
页数:11
相关论文
共 29 条
[1]  
[Anonymous], 2013, Nonlinear control systems
[2]   H-INFINITY CONTROL FOR NONLINEAR-SYSTEMS WITH OUTPUT-FEEDBACK [J].
BALL, JA ;
HELTON, JW ;
WALKER, ML .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (04) :546-559
[3]  
BASAR T, 1990, HINFINITY OPTIMAL CO
[4]   INVERSION TECHNIQUES FOR TRAJECTORY CONTROL OF FLEXIBLE ROBOT ARMS [J].
DELUCA, A ;
LUCIBELLO, P ;
ULIVI, G .
JOURNAL OF ROBOTIC SYSTEMS, 1989, 6 (04) :325-344
[5]   OUTPUT-FEEDBACK STABILIZATION OF FULLY LINEARIZABLE SYSTEMS [J].
ESFANDIARI, F ;
KHALIL, HK .
INTERNATIONAL JOURNAL OF CONTROL, 1992, 56 (05) :1007-1037
[6]   Tracking controllers for systems linear in the unmeasured states [J].
Freeman, RA ;
Kokotovic, PV .
AUTOMATICA, 1996, 32 (05) :735-746
[7]   DESIGN OF SOFTER ROBUST NONLINEAR CONTROL LAWS [J].
FREEMAN, RA ;
KOKOTOVIC, PV .
AUTOMATICA, 1993, 29 (06) :1425-1437
[8]   GLOBAL ROBUST STABILIZATION OF NONLINEAR CASCADED SYSTEMS [J].
IMURA, J ;
SUGIE, T ;
YOSHIKAWA, T .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (05) :1084-1089
[9]   A small-gain control method for nonlinear cascaded systems with dynamic uncertainties [J].
Jiang, ZP ;
Mareels, IMY .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (03) :292-308
[10]   A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems [J].
Jiang, ZP ;
Mareels, IMY ;
Wang, Y .
AUTOMATICA, 1996, 32 (08) :1211-1215