Space analyticity for the Navier-Stokes and related equations with initial data in Lp

被引:107
作者
Grujic, Z [1 ]
Kukavica, I
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[3] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jfan.1997.3167
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a method of estimating the space analyticity radios of solutions for the Navier-Stokes and related equations in terms of L-p and L-infinity norms of the initial data. The method enables us to express the space analyticity radius for 3D Navier-Stokes equations in terms of the Reynolds number of the flow. Also, for the Kuramoto-Sivashinsky equation, we give a partial answer to a conjecture that the radius of space analyticity on the attractor is independent of the spatial period. (C) 1998 Academic Press.
引用
收藏
页码:447 / 466
页数:20
相关论文
共 17 条
[1]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[2]   THERMODYNAMIC LIMIT OF THE GINZBURG-LANDAU EQUATIONS [J].
COLLET, P .
NONLINEARITY, 1994, 7 (04) :1175-1190
[3]   A GLOBAL ATTRACTING SET FOR THE KURAMOTO-SIVASHINSKY EQUATION [J].
COLLET, P ;
ECKMANN, JP ;
EPSTEIN, H ;
STUBBE, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (01) :203-214
[4]   ANALYTICITY FOR THE KURAMOTO-SIVASHINSKY EQUATION [J].
COLLET, P ;
ECKMANN, JP ;
EPSTEIN, H ;
STUBBE, J .
PHYSICA D, 1993, 67 (04) :321-326
[5]   SPACE-TIME BEHAVIOR IN PROBLEMS OF HYDRODYNAMIC TYPE - A CASE-STUDY [J].
COLLET, P ;
ECKMANN, JP .
NONLINEARITY, 1992, 5 (06) :1265-1302
[6]  
CONSTANTIN P, 1988, CHIC LECT MATH CHIC
[7]  
ECKMANN JP, COMMUNICATION
[8]   On the Schrodinger equation in L(p) spaces [J].
ElMennaoui, O ;
Keyantuo, V .
MATHEMATISCHE ANNALEN, 1996, 304 (02) :293-302
[9]   INITIAL VALUE-PROBLEM FOR NAVIER-STOKES EQUATIONS WITH DATA IN LP [J].
FABES, EB ;
JONES, BF ;
RIVIERE, NM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1972, 45 (03) :222-&
[10]   GEVREY CLASS REGULARITY FOR THE SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
FOIAS, C ;
TEMAM, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (02) :359-369