Ubiquitination is required for the retro-translocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome

被引:145
作者
de Virgilio, M
Weninger, H
Ivessa, NE
机构
[1] Univ Vienna, Dept Mol Genet, A-1030 Vienna, Austria
[2] Bioctr Vienna, A-1030 Vienna, Austria
关键词
D O I
10.1074/jbc.273.16.9734
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the endoplasmic reticulum (ER), an efficient "quality control system" operates to ensure that mutated and incorrectly folded proteins are selectively degraded. We are studying ER-associated degradation using a truncated variant of the rough ER-specific type I transmembrane glycoprotein, ribophorin I. The truncated polypeptide (RI332) consists of only the 332 amino-terminal amino acids of the protein corresponding to most of its luminal domain and, in contrast to the long-lived endogenous ribophorin I, is rapidly degraded. Here we show that the ubiquitin-proteasome pathway is involved in the destruction of the truncated ribophorin I. Thus, when RI332 that itself appears to be a substrate for ubiquitination was expressed in a mutant hamster cell line harboring a temperature-sensitive mutation in the ubiquitin-activating enzyme El affecting ubiquitin dependent proteolysis, the protein is dramatically stabilized at the restrictive temperature. Moreover, inhibitors of proteasome function effectively block the degradation of RI332. Cell fractionation experiments indicate that RI332 accumulates in the cytosol when degradation is prevented by proteasome inhibitors but remains associated with the lumen of the ER under ubiquitination deficient conditions, suggesting that the release of the protein into the cytosol is ubiquitination-dependent. Accordingly, when ubiquitination is impaired, a considerable amount of RI332, binds to the ER chaperone calnexin and to the Sec61 complex that could effect retro-translocation of the polypeptide to the cytosol, Before proteolysis of RI332, its N-linked oligosaccharide is cleaved in two distinct steps, the first of which might occur when the protein is still associated with the ER, as the trimmed glycoprotein intermediate efficiently interacts with calnexin and Sec61, From our data we conclude that the steps that lead a newly synthesized luminal ER glycoprotein to degradation by the proteasome are tightly coupled and that especially ubiquitination plays a crucial role in the retro-translocation of the substrate protein for proteolysis to the cytosol.
引用
收藏
页码:9734 / 9743
页数:10
相关论文
共 75 条
[11]   ASSEMBLY OF YEAST SEC PROTEINS INVOLVED IN TRANSLOCATION INTO THE ENDOPLASMIC-RETICULUM INTO A MEMBRANE-BOUND MULTISUBUNIT COMPLEX [J].
DESHAIES, RJ ;
SANDERS, SL ;
FELDHEIM, DA ;
SCHEKMAN, R .
NATURE, 1991, 349 (6312) :806-808
[12]   MOLECULAR DETERMINANTS OF PROTEIN HALF-LIVES IN EUKARYOTIC CELLS [J].
DICE, JF .
FASEB JOURNAL, 1987, 1 (05) :349-357
[13]  
Ermonval M, 1997, J CELL SCI, V110, P323
[14]  
ESSER V, 1988, J BIOL CHEM, V263, P13276
[15]   ANALYSIS OF 2 MUTATED VACUOLAR PROTEINS REVEALS A DEGRADATION PATHWAY IN THE ENDOPLASMIC-RETICULUM OR A RELATED COMPARTMENT OF YEAST [J].
FINGER, A ;
KNOP, M ;
WOLF, DH .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1993, 218 (02) :565-574
[16]   The degradation of apolipoprotein B100 is mediated by the ubiquitin-proteasome pathway and involves heat shock protein 70 [J].
Fisher, EA ;
Zhou, MY ;
Mitchell, DM ;
Wu, XJ ;
Omura, S ;
Wang, HX ;
Goldberg, AL ;
Ginsberg, HN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (33) :20427-20434
[17]  
GALLAGHER SR, 1996, CURRENT PROTOCOLS MO, V2
[18]   PROTEIN TRANSLOCATION INTO PROTEOLIPOSOMES RECONSTITUTED FROM PURIFIED COMPONENTS OF THE ENDOPLASMIC-RETICULUM MEMBRANE [J].
GORLICH, D ;
RAPOPORT, TA .
CELL, 1993, 75 (04) :615-630
[19]   QUALITY-CONTROL IN THE SECRETORY PATHWAY [J].
HAMMOND, C ;
HELENIUS, A .
CURRENT OPINION IN CELL BIOLOGY, 1995, 7 (04) :523-529
[20]   Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein [J].
Hampton, RY ;
Gardner, RG ;
Rine, J .
MOLECULAR BIOLOGY OF THE CELL, 1996, 7 (12) :2029-2044