A fully-coupled fluid-structure interaction simulation of cerebral aneurysms

被引:201
作者
Bazilevs, Y. [1 ]
Hsu, M. -C. [1 ]
Zhang, Y. [2 ]
Wang, W. [2 ]
Liang, X. [2 ]
Kvamsdal, T. [3 ]
Brekken, R. [4 ]
Isaksen, J. G. [5 ,6 ,7 ]
机构
[1] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA
[2] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[3] SINTEF Informat & Commun Technol, Dept Appl Math, N-7465 Trondheim, Norway
[4] SINTEF Hlth Res, Dept Med Technol, N-7465 Trondheim, Norway
[5] Univ Hosp N Norway, Dept Neurosurg, N-9038 Tromso, Norway
[6] Univ Hosp N Norway, Dept Neurol, N-9038 Tromso, Norway
[7] Univ Tromso, Inst Clin Med, N-9037 Tromso, Norway
关键词
Cerebral aneurysms; Fluid-structure interaction; Arterial wall tissue modeling; Incompressible Navier-Stokes equations; Boundary layer meshing; Wall shear stress; Wall tension; NAVIER-STOKES EQUATIONS; GENERALIZED-ALPHA METHOD; TIME FINITE-ELEMENTS; BLOOD-FLOW; BOUNDARY-CONDITIONS; IMAGING DATA; MECHANICS; ARTERIES; COMPUTATION; FORMULATION;
D O I
10.1007/s00466-009-0421-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a computational vascular fluid-structure interaction (FSI) methodology and its application to patient-specific aneurysm models of the middle cerebral artery bifurcation. A fully coupled fluid-structural simulation approach is reviewed, and main aspects of mesh generation in support of patient-specific vascular FSI analyses are presented. Quantities of hemodynamic interest such as wall shear stress and wall tension are studied to examine the relevance of FSI modeling as compared to the rigid arterial wall assumption. We demonstrate the importance of including the flexible wall modeling in vascular blood flow simulations by performing a comparison study that involves four patient-specific models of cerebral aneurysms varying in shape and size.
引用
收藏
页码:3 / 16
页数:14
相关论文
共 48 条
[1]  
[Anonymous], ENCY COMPUTATIONAL M
[2]   Simulation of intracranial aneurysm stenting: Techniques and challenges [J].
Appanaboyina, Sunil ;
Mut, Fernando ;
Loehner, Rainald ;
Putman, Christopher ;
Cebral, Juan .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (45-46) :3567-3582
[3]   Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems [J].
Badia, Santiago ;
Nobile, Fabio ;
Vergara, Christian .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (33-36) :2768-2784
[4]   Isogeometric fluid-structure interaction: theory, algorithms, and computations [J].
Bazilevs, Y. ;
Calo, V. M. ;
Hughes, T. J. R. ;
Zhang, Y. .
COMPUTATIONAL MECHANICS, 2008, 43 (01) :3-37
[5]   Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Hughes, T. J. R. ;
Reali, A. ;
Scovazzi, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 197 (1-4) :173-201
[6]   Weak imposition of Dirichlet boundary conditions in fluid mechanics [J].
Bazilevs, Y. ;
Hughes, T. J. R. .
COMPUTERS & FLUIDS, 2007, 36 (01) :12-26
[7]   Isogeometric fluid-structure interaction analysis with applications to arterial blood flow [J].
Bazilevs, Y. ;
Calo, V. M. ;
Zhang, Y. ;
Hughes, T. J. R. .
COMPUTATIONAL MECHANICS, 2006, 38 (4-5) :310-322
[8]   Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device [J].
Bazilevs, Y. ;
Gohean, J. R. ;
Hughes, T. J. R. ;
Moser, R. D. ;
Zhang, Y. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (45-46) :3534-3550
[9]  
Bazilevs Y., 2009, COMPUT MECH
[10]   STREAMLINE UPWIND PETROV-GALERKIN FORMULATIONS FOR CONVECTION DOMINATED FLOWS WITH PARTICULAR EMPHASIS ON THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BROOKS, AN ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 32 (1-3) :199-259