On the regularity of matrix refinable functions

被引:40
作者
Jiang, QT
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119260, Singapore
[2] Peking Univ, Dept Math, Beijing 100871, Peoples R China
关键词
matrix refinable function; transition operator; regularity;
D O I
10.1137/S003614109630817X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the transition operator T-P associated with the matrix refinement mask P(omega) = 2(-d)Sigma(alpha is an element of[0,N]d)P(alpha)exp(-i alpha omega) is equivalent to the matrix (2(-d) A(2i-j))i,j with A(j) = Sigma(kappa is an element of[0,N]d)P(kappa-j) x P-kappa denoting the Kronecker products of matrices P (kappa-j), P-kappa. Some spectral properties of T-P are studied and a complete characterization of the matrix refinable functions in the Sobolev space W-n (R-d) for nonnegative integers n is provided. The Sobolev regularity estimate of the matrix refinable function is given in terms of the spectral radius of a restricted transition operator. These estimates are analyzed in some examples.
引用
收藏
页码:1157 / 1176
页数:20
相关论文
共 32 条
[1]   A study of orthonormal multi-wavelets [J].
Chui, CK ;
Lian, JA .
APPLIED NUMERICAL MATHEMATICS, 1996, 20 (03) :273-298
[2]  
Cohen A, 1996, REV MAT IBEROAM, V12, P527
[3]   Regularity of refinable function vectors [J].
Cohen, A ;
Daubechies, I ;
Plonka, G .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (03) :295-324
[4]  
COHEN A, 1996, REGULARITY MULTIVARI
[5]   HARMONIC-FUNCTIONS FOR A TRANSITION OPERATOR AND APPLICATIONS [J].
CONZE, JP ;
RAUGI, A .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1990, 118 (03) :273-310
[6]  
Daubechies I, 1992, 10 LECT WAVELETS
[7]   THE STRUCTURE OF FINITELY GENERATED SHIFT-INVARIANT SPACES IN L(2)(R(D)) [J].
DEBOOR, C ;
DEVORE, RA ;
RON, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 119 (01) :37-78
[8]   Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets [J].
Donovan, GC ;
Geronimo, JS ;
Hardin, DP .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (06) :1791-1815
[9]   SOBOLEV CHARACTERIZATION OF SOLUTIONS OF DILATION EQUATIONS [J].
EIROLA, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (04) :1015-1030
[10]   FRACTAL FUNCTIONS AND WAVELET EXPANSIONS BASED ON SEVERAL SCALING FUNCTIONS [J].
GERONIMO, JS ;
HARDIN, DP ;
MASSOPUST, PR .
JOURNAL OF APPROXIMATION THEORY, 1994, 78 (03) :373-401