Genetic Basis of Candida Biofilm Resistance Due to Drug-Sequestering Matrix Glucan

被引:175
作者
Nett, Jeniel E. [1 ,3 ]
Sanchez, Hiram [1 ]
Cain, Michael T. [1 ]
Andes, David R. [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Med, Madison, WI 53792 USA
[2] Univ Wisconsin, Dept Med Microbiol & Immunol, Madison, WI 53792 USA
[3] Univ Wisconsin, Dept Cellular & Mol Biol, Madison, WI 53792 USA
基金
美国国家卫生研究院;
关键词
FLUCONAZOLE RESISTANCE; ALBICANS BIOFILMS; EFFLUX PUMPS; BETA-1,3-GLUCAN; MODEL;
D O I
10.1086/651200
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Medical devices provide an ecological niche for microbes to flourish as a biofilm community, protected from antimicrobials and host defenses. Biofilms formed by Candida albicans, the most common fungal pathogen, survive exposure to extraordinarily high drug concentrations. Here, we show that beta-glucan synthase Fks1p produces glucan, which is deposited in the biofilm matrix. The extracellular glucan is required for biofilm resistance and acts by sequestering antifungals, rendering cells resistant to their action. These findings provide the genetic basis for how biofilm matrix production governs drug resistance by impeding drug diffusion and also identify a useful biofilm drug target.
引用
收藏
页码:171 / 175
页数:5
相关论文
共 15 条
[1]   Biofilm matrix of Candida albicans and Candida tropicalis:: chemical composition and role in drug resistance [J].
Al-Fattani, Mohammed A. ;
Douglas, L. Julia .
JOURNAL OF MEDICAL MICROBIOLOGY, 2006, 55 (08) :999-1008
[2]  
Andes D, 2005, METH MOLEC MED, V118, P111
[3]   Development and characterization of an in vivo central venous catheter Candida albicans biofilm model [J].
Andes, D ;
Nett, J ;
Oschel, P ;
Albrecht, R ;
Marchillo, K ;
Pitula, A .
INFECTION AND IMMUNITY, 2004, 72 (10) :6023-6031
[4]   RIM101-dependent and -independent pathways govern pH responses in Candida albicans [J].
Davis, D ;
Wilson, RB ;
Mitchell, AP .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (03) :971-978
[5]   Correlating Echinocandin MIC and Kinetic Inhibition of fks1 Mutant Glucan Synthases for Candida albicans: Implications for Interpretive Breakpoints [J].
Garcia-Effron, Guillermo ;
Park, Steven ;
Perlin, David S. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2009, 53 (01) :112-122
[6]   New modules for PCR-based gene targeting in Candida albicans:: rapid and efficient gene targeting using 100 bp of flanking homology region [J].
Gola, S ;
Martin, R ;
Walther, A ;
Dünkler, A ;
Wendland, J .
YEAST, 2003, 20 (16) :1339-1347
[7]   Cloning of the Candida albicans homolog of Saccharomyces cerevisiae GSC1/FKS1 and its involvement in beta-1,3-glucan synthesis [J].
Mio, T ;
AdachiShimizu, M ;
Tachibana, Y ;
Tabuchi, H ;
Inoue, SB ;
Yabe, T ;
YamadaOkabe, T ;
Arisawa, M ;
Watanabe, T ;
YamadaOkabe, H .
JOURNAL OF BACTERIOLOGY, 1997, 179 (13) :4096-4105
[8]   Mechanism of fluconazole resistance in Candida albicans biofilms:: Phase-specific role of efflux pumps and membrane sterols [J].
Mukherjee, PK ;
Chandra, J ;
Kuhn, DA ;
Ghannoum, MA .
INFECTION AND IMMUNITY, 2003, 71 (08) :4333-4340
[9]   β-1,3 glucan as a test for central venous catheter biofilm infection [J].
Nett, Jeniel ;
Lincoln, Leslie ;
Marchillo, Karen ;
Andes, David .
JOURNAL OF INFECTIOUS DISEASES, 2007, 195 (11) :1705-1712
[10]   Putative role of β-1,3 glucans in Candida albicans biofilm resistance [J].
Nett, Jeniel ;
Lincoln, Leslie ;
Marchillo, Karen ;
Massey, Randall ;
Holoyda, Kathleen ;
Hoff, Brian ;
VanHandel, Michelle ;
Andes, David .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2007, 51 (02) :510-520