Engineering Clostridium acetobutylicum with a histidine kinase knockout for enhanced n-butanol tolerance and production

被引:103
作者
Xu, Mengmeng [1 ]
Zhao, Jingbo [1 ]
Yu, Le [1 ]
Tang, I-Ching [2 ]
Xue, Chuang [3 ]
Yang, Shang-Tian [1 ]
机构
[1] Ohio State Univ, William G Lowrie Dept Chem & Biomol Engn, Columbus, OH 43210 USA
[2] Bioproc Innovat Co, Dublin, OH 43017 USA
[3] Dalian Univ Technol, Dept Life Sci & Biotechnol, Dalian 116024, Peoples R China
基金
美国国家科学基金会;
关键词
ABE fermentation; Butanol tolerance; C; acetobutylicum; Histidine kinase; Gene knockout; Metabolic engineering; ACIDOGENIC CHEMOSTAT CELLS; SOLVENT PRODUCTION; TRANSCRIPTIONAL ANALYSIS; RECOMBINANT STRAINS; ESCHERICHIA-COLI; SPO0A; STRESS; OVEREXPRESSION; BUTYRATE; ACETATE;
D O I
10.1007/s00253-014-6249-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Clostridium acetobutylicum JB200, a mutant strain of C. acetobutylicum ATCC 55025 obtained through strain evolution in a fibrous bed bioreactor, had high butanol tolerance and produced up to similar to 21 g/L butanol from glucose in batch fermentation, an improvement of similar to 67 % over the parental strain (similar to 12.6 g/L). Comparative genomic analysis revealed a single-base deletion in the cac3319 gene leading to C-terminal truncation in its encoding histidine kinase (HK) in JB200. To study the effects of cac3319 mutation on cell growth and fermentation, the cac3319 gene in ATCC 55025 was disrupted using the ClosTron group II intron-based gene inactivation system. Compared to ATCC 55025, the cac3319 HK knockout mutant, HKKO, produced 44.4 % more butanol (18.2 +/- 1.3 vs. 12.6 +/- 0.2 g/L) with a 90 % higher productivity (0.38 +/- 0.03 vs. 0.20 +/- 0.02 g/L h) due to increased butanol tolerance, confirming, for the first time, that cac3319 plays an important role in regulating solvent production and tolerance in C. acetobutylicum. This work also provides a novel metabolic engineering strategy for generating high-butanol-tolerant and high-butanol-producing strains for industrial applications.
引用
收藏
页码:1011 / 1022
页数:12
相关论文
共 58 条
[51]   Transcription factors and genetic circuits orchestrating the complex, multilayered response of Clostridium acetobutylicum to butanol and butyrate stress [J].
Wang, Qinghua ;
Venkataramanan, Keerthi Prasad ;
Huang, Hongzhan ;
Papoutsakis, Eleftherios T. ;
Wu, Cathy H. .
BMC SYSTEMS BIOLOGY, 2013, 7
[52]  
Wolanin PM, 2002, GENOME BIOL, V3
[53]   Prospective and development of butanol as an advanced biofuel [J].
Xue, Chuang ;
Zhao, Xin-Qing ;
Liu, Chen-Guang ;
Chen, Li-Jie ;
Bai, Feng-Wu .
BIOTECHNOLOGY ADVANCES, 2013, 31 (08) :1575-1584
[54]  
Yang S. T., 2013, U. S. Patent, Patent No. [8450093 B1., 8450093]
[55]   Metabolic engineering of Clostridium tyrobutyricum for n-butanol production [J].
Yu, Mingrui ;
Zhang, Yali ;
Tang, I-Ching ;
Yang, Shang-Tian .
METABOLIC ENGINEERING, 2011, 13 (04) :373-382
[56]  
Zhao JB, 2013, BIOPROCESSING TECHNOLOGIES IN BIOREFINERY FOR SUSTAINABLE PRODUCTION OF FUELS, CHEMICALS, AND POLYMERS, P235
[57]   Problems with the microbial production of butanol [J].
Zheng, Yan-Ning ;
Li, Liang-Zhi ;
Xian, Mo ;
Ma, Yu-Jiu ;
Yang, Jian-Ming ;
Xu, Xin ;
He, Dong-Zhi .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2009, 36 (09) :1127-1138
[58]   Dissecting the assays to assess microbial tolerance to toxic chemicals in bioprocessing [J].
Zingaro, Kyle A. ;
Nicolaou, Sergios A. ;
Papoutsakis, Eleftherios T. .
TRENDS IN BIOTECHNOLOGY, 2013, 31 (11) :643-653