The geometry of weakly self-dual Kahler surfaces

被引:60
作者
Apostolov, V
Calderbank, DMJ
Gauduchon, P
机构
[1] Univ Quebec Montreal, Dept Math, Montreal, PQ H3C 3P8, Canada
[2] Univ Edinburgh, Dept Math & Stat, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Ecole Polytech, Ctr Math, CNRS, UMR 7640, F-91128 Palaiseau, France
基金
加拿大自然科学与工程研究理事会;
关键词
almost-Kahler; 4-manifolds; Calabi extremal metrics; Kahler surfaces; weak self-duality;
D O I
10.1023/A:1022251819334
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Kahler surfaces with harmonic anti-self-dual Weyl tensor. We provide an explicit local description, which we use to obtain the complete classification in the compact case. We give new examples of extremal Kahler metrics, including Kahler Einstein metrics and conformally Einstein Kahler metrics. We also extend some of our results to almost Kahler 4-manifolds, providing new examples of Ricci-flat almost Kahler metrics which are not Kahler.
引用
收藏
页码:279 / 322
页数:44
相关论文
共 51 条
[1]   Kahler geometry of toric varieties and extremal metrics [J].
Abreu, M .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1998, 9 (06) :641-651
[2]  
Ahara K., 1991, J. Fac. Sci. Univ. Tokyo Sect. IA, V38, P251
[3]   Symplectic 4-manifolds with Hermitian Weyl tensor [J].
Apostolov, V ;
Armstrong, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (10) :4501-4513
[4]   Local rigidity of certain classes of almost Kahler 4-manifolds [J].
Apostolov, V ;
Armstrong, J ;
Draghici, T .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2002, 21 (02) :151-176
[5]   A splitting theorem for Kahler manifolds whose Ricci tensors have constant eigenvalues [J].
Apostolov, V ;
Draghici, T ;
Moroianu, A .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (07) :769-789
[6]   The Riemannian Goldberg-Sachs theorem [J].
Apostolov, V ;
Gauduchon, P .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1997, 8 (04) :421-439
[7]   Almost Kahler 4-manifolds with J-invariant Ricci tensor and special Weyl tensor [J].
Apostolov, V ;
Draghici, T .
QUARTERLY JOURNAL OF MATHEMATICS, 2000, 51 :275-294
[8]  
Apostolov V, 2002, ANN SCUOLA NORM-SCI, V1, P203
[9]  
Armstrong J, 2002, J REINE ANGEW MATH, V542, P53
[10]  
Barth W., 1984, COMPACT COMPLEX SURF