Topological signature of first-order phase transitions in a mean-field model

被引:40
作者
Angelani, L
Casetti, L
Pettini, M
Ruocco, G
Zamponi, F
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[2] Univ Roma La Sapienza, INFM, Ctr Stat Mech & Complex, I-00185 Rome, Italy
[3] INFM, UdR Firenze, I-50019 Sesto Fiorentino, Italy
[4] Osserv Astrofis Arcetri, Ist Nazl Astrofis, I-50125 Florence, Italy
来源
EUROPHYSICS LETTERS | 2003年 / 62卷 / 06期
关键词
D O I
10.1209/epl/i2003-00439-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a mean-field Hamiltonian system whose potential energy V ({q(i)} i= 1... N) is expressed as a sum of k-body interactions and we show that in the thermodynamic limit the presence and the energy position of first-order phase transitions can be inferred by the study of the topology of configuration space induced by V, without resorting to any statistical measure. The thermodynamics of our model is analytically solvable and - depending on the value of k - displays no transition ( k = 1), second-order ( k = 2) or first-order (k > 2) phase transition. This rich behaviour is quantitatively retrieved by the investigation of one of the topological invariants (the Euler characteristic chi(v)) of the subsets M-v defined by M-v = {(q(1),..., q(N)) | V ({q(i)})/ N less than or equal to v}.
引用
收藏
页码:775 / 781
页数:7
相关论文
共 13 条
[1]   Quasisaddles as relevant points of the potential energy surface in the dynamics of supercooled liquids [J].
Angelani, L ;
Di Leonardo, R ;
Ruocco, G ;
Scala, A ;
Sciortino, F .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (23) :10297-10306
[2]   Saddles in the energy landscape probed by supercooled liquids [J].
Angelani, L ;
Di Leonardo, R ;
Ruocco, G ;
Scala, A ;
Sciortino, F .
PHYSICAL REVIEW LETTERS, 2000, 85 (25) :5356-5359
[3]   Energy landscape of a Lennard-Jones liquid: Statistics of stationary points [J].
Broderix, K ;
Bhattacharya, KK ;
Cavagna, A ;
Zippelius, A ;
Giardina, I .
PHYSICAL REVIEW LETTERS, 2000, 85 (25) :5360-5363
[4]   Exact result on topology and phase transitions at any finite N -: art. no. 036112 [J].
Casetti, L ;
Cohen, EGD ;
Pettini, M .
PHYSICAL REVIEW E, 2002, 65 (03)
[5]   Geometric approach to Hamiltonian dynamics and statistical mechanics [J].
Casetti, L ;
Pettini, M ;
Cohen, EGD .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 337 (03) :237-341
[6]   Role of saddles in mean-field dynamics above the glass transition [J].
Cavagna, A ;
Giardina, I ;
Parisi, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (26) :5317-5326
[7]   Topology and phase transitions: Paradigmatic evidence [J].
Franzosi, R ;
Pettini, M ;
Spinelli, L .
PHYSICAL REVIEW LETTERS, 2000, 84 (13) :2774-2777
[8]  
Gallavotti G., 1999, STAT MECH
[9]  
Georgii H.-O., 1988, Gibbs Measures and Phase Transitions
[10]   Geometric approach to the dynamic glass transition [J].
Grigera, TS ;
Cavagna, A ;
Giardina, I ;
Parisi, G .
PHYSICAL REVIEW LETTERS, 2002, 88 (05) :4