Structural studies of glutenin subunits 1Dy10 and 1Dy12 by matrix-assisted laser desorption/ionisation mass spectrometry and high-performance liquid chromatography/electrospray ionisation mass spectrometry

被引:41
作者
Cunsolo, V
Foti, S
Saletti, R
Gilbert, S
Tatham, AS
Shewry, PR
机构
[1] Univ Catania, Dipartimento Sci Chim, I-95125 Catania, Italy
[2] Univ Bristol, Dept Agr Sci, Long Ashton Res Stn, Bristol BS41 9AF, Avon, England
关键词
D O I
10.1002/rcm.938
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Structural studies of the high molecular weight (HMW) glutenin subunits 1Dy10 and 1Dy12 of bread wheat were conducted using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) and reversed-phase high-performance liquid chromatography/electrospray ionisation mass spectrometry (RP-HPLC/ESI-MS). For both proteins, MALDI-TOFMS analysis showed that the isolated fractions contained a second component with a mass about 500-540 Da lower than the major component. The testing and correction of the gene-derived amino acid sequences of both proteins were performed by direct MALDI-TOFMS analysis of their tryptic peptide mixture and analysis of the digests was performed by recording several MALDI mass spectra of the mixture at low, medium and high mass ranges, optimising the matrix and the acquisition parameters for each mass range. Complementary data were obtained by RP-HPLC/ESI-MS analysis of the tryptic digest. This resulted in the coverage of the whole protein sequences except for two short fragments (T1 and T8), which are identical in the two homologous subunits, and for an additional dipeptide (T14) in subunit 1Dy12, which were not detected. It also demonstrated that, in contrast to the gene-derived data, the sequence of subunit 1Dy12 does not include the dipeptide Gly-Gln between residues Gln(454) and Pro(455), and that the lower mass components present in both fractions correspond to the same sequences lacking short peptides that are probably lost from the protein N- or C-termini. Finally, the results obtained provide evidence for the, lack of a substantial level of glycosylation or other post-translational modifications of the two subunits, and demonstrate that mass spectrometric mapping is the most useful method presently available for the direct verification of the gene-derived sequences of HMW glutenin subunits and similar proteins. Copyright (C) 2003 John Wiley Sons, Ltd.
引用
收藏
页码:442 / 454
页数:13
相关论文
共 21 条
[11]  
Mendez E, 1995, J MASS SPECTROM, pS123
[12]  
Payne P. I., 1983, Cereal Research Communications, V11, P29
[13]   2 TISSUE-SPECIFIC ISOZYMES OF CREATINE-KINASE HAVE CLOSELY MATCHED AMINO-ACID SEQUENCES [J].
PICKERING, L ;
PANG, H ;
BIEMANN, K ;
MUNRO, H ;
SCHIMMEL, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (08) :2310-2314
[14]   ANALYSIS OF A GENOMIC DNA SEGMENT CARRYING THE WHEAT HIGH-MOLECULAR-WEIGHT (HMW) GLUTENIN BX17 SUBUNIT AND ITS USE AS AN RFLP MARKER [J].
REDDY, P ;
APPELS, R .
THEORETICAL AND APPLIED GENETICS, 1993, 85 (05) :616-624
[15]   THE PURIFICATION AND N-TERMINAL AMINO-ACID SEQUENCE-ANALYSIS OF THE HIGH MOLECULAR-WEIGHT GLUTEN POLYPEPTIDES OF WHEAT [J].
SHEWRY, PR ;
FIELD, JM ;
FAULKS, AJ ;
PARMAR, S ;
MIFLIN, BJ ;
DIETLER, MD ;
LEW, EJL ;
KASARDA, DD .
BIOCHIMICA ET BIOPHYSICA ACTA, 1984, 788 (01) :23-34
[16]   HIGH-MOLECULAR-WEIGHT SUBUNITS OF WHEAT GLUTENIN [J].
SHEWRY, PR ;
HALFORD, NG ;
TATHAM, AS .
JOURNAL OF CEREAL SCIENCE, 1992, 15 (02) :105-120
[17]   Disulphide bonds in wheat gluten proteins [J].
Shewry, PR ;
Tatham, AS .
JOURNAL OF CEREAL SCIENCE, 1997, 25 (03) :207-227
[18]  
SHEWRY PR, 1990, BIOCHEM J, V267, P1
[19]  
Tatham A. S., 1990, Advances in Cereal Science and Technology, V10, P1
[20]   NUCLEOTIDE-SEQUENCE OF A GENE FROM CHROMOSOME-1D OF WHEAT ENCODING A HMW-GLUTENIN SUBUNIT [J].
THOMPSON, RD ;
BARTELS, D ;
HARBERD, NP .
NUCLEIC ACIDS RESEARCH, 1985, 13 (19) :6833-6848