Electrocatalytic activity of Basolite™ F300 metal-organic-framework structures

被引:103
作者
Babu, K. Firoz [2 ]
Kulandainathan, M. Anbu [2 ]
Katsounaros, Ioannis [3 ]
Rassaei, Liza [1 ]
Burrows, Andrew D. [1 ]
Raithby, Paul R. [1 ]
Marken, Frank [1 ]
机构
[1] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
[2] Cent Electrochem Res Inst, Electorgan Div, Karaikkudi 630006, Tamil Nadu, India
[3] Aristotle Univ Thessaloniki, Dept Chem Engn, Inorgan Chem Lab, Thessaloniki 54124, Greece
基金
英国工程与自然科学研究理事会;
关键词
MOF; Voltammetry; Prussian blue; Reductive dissolution; Host guest electrochemistry; Water splitting; Sensor; PRUSSIAN BLUE; ELECTROCHEMISTRY; VOLTAMMETRY;
D O I
10.1016/j.elecom.2010.02.017
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
For the case of the commercially available metal-organic framework (MOF) structure Basolite (TM) F300 or Fe (BTC) with BTC = benzene-1,3,5-tricarboxylate, it is shown that the Fe(III/II) electrochemistry is dominated by reductive dissolution rather than ion insertion (which in marked contrast is dominating the behaviour of Fe(III/I) open framework processes in Prussian blues). Solid Fe(BTC) immobilised onto graphite or platinum working electrodes is investigated and it is shown that well-defined and reversible Fe(III/II) reduction responses occur only on platinum and in the presence of aqueous acid. The process is shown to follow a CE-type mechanism involving liberation of Fe(III) in acidic media, in particular for high concentrations of acid. Effective electrocatalysis for the oxidation of hydroxide to O-2 (anodic water splitting) is observed in alkaline aqueous media after initial cycling of the potential into the reduction potential zone. A mechanism based on a MOF-surface confined hydrous iron oxide film is proposed. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:632 / 635
页数:4
相关论文
共 33 条
[1]  
Adams RN, 1969, ELECTROCHEMISTRY SOL, P221
[2]   Post-Synthetic Modification of Tagged Metal-Organic Frameworks [J].
Burrows, Andrew D. ;
Frost, Christopher G. ;
Mahon, Mary F. ;
Richardson, Christopher .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (44) :8482-8486
[3]   Sulfur-tagged metal-organic frameworks and their post-synthetic oxidation [J].
Burrows, Andrew D. ;
Frost, Christopher G. ;
Mahon, Mary F. ;
Richardson, Christopher .
CHEMICAL COMMUNICATIONS, 2009, (28) :4218-4220
[4]   A route to high surface area, porosity and inclusion of large molecules in crystals [J].
Chae, HK ;
Siberio-Pérez, DY ;
Kim, J ;
Go, Y ;
Eddaoudi, M ;
Matzger, AJ ;
O'Keeffe, M ;
Yaghi, OM .
NATURE, 2004, 427 (6974) :523-527
[5]   Industrial applications of metal-organic frameworks [J].
Czaja, Alexander U. ;
Trukhan, Natalia ;
Mueller, Ulrich .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) :1284-1293
[6]   Metal hexacyanoferrates: Electrosynthesis, in situ characterization, and applications [J].
de Tacconi, NR ;
Rajeshwar, K ;
Lezna, RO .
CHEMISTRY OF MATERIALS, 2003, 15 (16) :3046-3062
[7]   Hydrogen storage in microporous metal-organic frameworks with exposed metal sites [J].
Dinca, Mircea ;
Long, Jeffrey R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (36) :6766-6779
[8]   Electrochemistry of metal-organic frameworks:: A description from the voltammetry of microparticles approach [J].
Domenech, Antonio ;
Garcia, Hermenegildo ;
Domenech-Carbo, Maria Teresa ;
Xamena, F. X. L. I. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (37) :13701-13711
[9]   Electrochemistry nanometric patterning of MOF particles:: Anisotropic metal electrodeposition in Cu/MOF [J].
Domenech, Antonio ;
Garcia, Hermenegildo ;
Domenech-Carbo, Maria Teresa ;
Xamena, F. X. L. I. .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (12) :1830-1834
[10]  
DOMENECHCARBO A, 2010, ELECTROCHEMISTRY POR, P98