Deep learning for multi-year ENSO forecasts

被引:868
作者
Ham, Yoo-Geun [1 ]
Kim, Jeong-Hwan [1 ]
Luo, Jing-Jia [2 ,3 ]
机构
[1] Chonnam Natl Univ, Dept Oceanog, Gwangju, South Korea
[2] Nanjing Univ Informat Sci & Technol, Inst Climate & Applicat Res ICAR CICFEM KLME ILCE, Nanjing, Jiangsu, Peoples R China
[3] Chinese Acad Sci, Inst Earth Environm, SKLLQG, Xian, Shaanxi, Peoples R China
基金
新加坡国家研究基金会;
关键词
EL-NINO; INDIAN-OCEAN; PREDICTION; FLAVORS;
D O I
10.1038/s41586-019-1559-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Variations in the El Nino/Southern Oscillation (ENSO) are associated with a wide array of regional climate extremes and ecosystem impacts(1). Robust, long-lead forecasts would therefore be valuable for managing policy responses. But despite decades of effort, forecasting ENSO events at lead times of more than one year remains problematic(2). Here we show that a statistical forecast model employing a deep-learning approach produces skilful ENSO forecasts for lead times of up to one and a half years. To circumvent the limited amount of observation data, we use transfer learning to train a convolutional neural network (CNN) first on historical simulations(3) and subsequently on reanalysis from 1871 to 1973. During the validation period from 1984 to 2017, the all-season correlation skill of the Nino3.4 index of the CNN model is much higher than those of current state-of-the-art dynamical forecast systems. The CNN model is also better at predicting the detailed zonal distribution of sea surface temperatures, overcoming a weakness of dynamical forecast models. A heat map analysis indicates that the CNN model predicts ENSO events using physically reasonable precursors. The CNN model is thus a powerful tool for both the prediction of ENSO events and for the analysis of their associated complex mechanisms.
引用
收藏
页码:568 / +
页数:17
相关论文
共 39 条
[11]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[12]   Two distinct roles of Atlantic SSTs in ENSO variability: North Tropical Atlantic SST and Atlantic Nino [J].
Ham, Yoo-Geun ;
Kug, Jong-Seong ;
Park, Jong-Yeon .
GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (15) :4012-4017
[13]   Exceptionally strong easterly wind burst stalling El Nino of 2014 [J].
Hu, Shineng ;
Fedorov, Alexey V. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (08) :2005-2010
[14]   Matplotlib: A 2D graphics environment [J].
Hunter, John D. .
COMPUTING IN SCIENCE & ENGINEERING, 2007, 9 (03) :90-95
[15]   Influence of the state of the Indian Ocean Dipole on the following year's El Nino [J].
Izumo, Takeshi ;
Vialard, Jerome ;
Lengaigne, Matthieu ;
Montegut, Clement de Boyer ;
Behera, Swadhin K. ;
Luo, Jing-Jia ;
Cravatte, Sophie ;
Masson, Sebastien ;
Yamagata, Toshio .
NATURE GEOSCIENCE, 2010, 3 (03) :168-172
[16]   How Many ENSO Flavors Can We Distinguish? [J].
Johnson, Nathaniel C. .
JOURNAL OF CLIMATE, 2013, 26 (13) :4816-4827
[17]   A Convolutional Neural Network for Modelling Sentences [J].
Kalchbrenner, Nal ;
Grefenstette, Edward ;
Blunsom, Phil .
PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, 2014, :655-665
[18]   THE NORTH AMERICAN MULTIMODEL ENSEMBLE Phase-1 Seasonal-to-Interannual Prediction; Phase-2 toward Developing Intraseasonal Prediction [J].
Kirtman, Ben P. ;
Min, Dughong ;
Infanti, Johnna M. ;
Kinter, James L., III ;
Paolino, Daniel A. ;
Zhang, Qin ;
van den Dool, Huug ;
Saha, Suranjana ;
Mendez, Malaquias Pena ;
Becker, Emily ;
Peng, Peitao ;
Tripp, Patrick ;
Huang, Jin ;
DeWitt, David G. ;
Tippett, Michael K. ;
Barnston, Anthony G. ;
Li, Shuhua ;
Rosati, Anthony ;
Schubert, Siegfried D. ;
Rienecker, Michele ;
Suarez, Max ;
Li, Zhao E. ;
Marshak, Jelena ;
Lim, Young-Kwon ;
Tribbia, Joseph ;
Pegion, Kathleen ;
Merryfield, William J. ;
Denis, Bertrand ;
Wood, Eric F. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2014, 95 (04) :585-601
[19]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[20]   Interactive feedback between ENSO and the Indian Ocean [J].
Kug, Jong-Seong ;
Kang, In-Sik .
JOURNAL OF CLIMATE, 2006, 19 (09) :1784-1801