Probing Solid-State Nanopores with Light for the Detection of Unlabeled Analytes

被引:57
作者
Anderson, Brett N. [1 ]
Assad, Ossama N. [2 ]
Gilboa, Tal [2 ]
Squires, Allison H. [1 ]
Bar, Daniel [2 ]
Meller, Amit [1 ,2 ]
机构
[1] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[2] Technion Israel Inst Technol, Dept Biomed Engn, IL-32000 Haifa, Israel
基金
美国国家卫生研究院;
关键词
solid-state nanopores; optical sensing; total internal reflection fluorescence; confocal microscopy; photon counting; DNA TRANSLOCATION; POLYNUCLEOTIDE MOLECULES; RNA; ARRAYS; PORES; DISCRIMINATION; IDENTIFICATION; NUCLEOTIDES; RECOGNITION; RESOLUTION;
D O I
10.1021/nn505545h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanopore sensing has enabled label-free single-molecule measurements on a wide variety of analytes, including DNA, RNA, and protein complexes. Much progress has been made toward biotechnological applications; however, electrically probing the ion current introduces nonideal noise components. Here we further develop a method to couple an ionic current to a photon-by-photon counting of fluorescent signal from Ca2+-sensitive dyes and demonstrate label-free optical detection of biopolymer translocation through solid-state nanopores using TIRF and confocal microscopy. We show that by fine adjustment of the CaCl2 gradient, EGTA concentration, and voltage, the optical signals can be localized to the immediate vicinity of the pore. Consequently, the noise spectral density distribution in the optical signal exhibits a nearly flat distribution throughout the entire frequency range. With the use of high-speed photon counting devices in confocal microscopy and higher photon count rates using stronger light sources, we can improve the signal-to-noise ratio of signal acquisition, while the use of wide-field imaging in TIRF can allow for simultaneous quantitative imaging of large arrays of nanopores.
引用
收藏
页码:11836 / 11845
页数:10
相关论文
共 43 条
[1]   Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules [J].
Akeson, M ;
Branton, D ;
Kasianowicz, JJ ;
Brandin, E ;
Deamer, DW .
BIOPHYSICAL JOURNAL, 1999, 77 (06) :3227-3233
[2]  
Anderson B. N., 2013, THESIS BOSTON U BOST
[3]   pH Tuning of DNA Translocation Time through Organically Functionalized Nanopores [J].
Anderson, Brett N. ;
Muthukumar, Murugappan ;
Meller, Amit .
ACS NANO, 2013, 7 (02) :1408-1414
[4]   Directly Observing the Motion of DNA Molecules near Solid-State Nanopores [J].
Ando, Genki ;
Hyun, Changbae ;
Li, Jiali ;
Mitsui, Toshiyuki .
ACS NANO, 2012, 6 (11) :10090-10097
[5]   Zero-Mode Waveguide Detection of Flow-Driven DNA Translocation through Nanopores [J].
Auger, Thomas ;
Mathe, Jerome ;
Viasnoff, Virgile ;
Charron, Gaelle ;
Di Meglio, Jean-Marc ;
Auvray, Loic ;
Montel, Fabien .
PHYSICAL REVIEW LETTERS, 2014, 113 (02)
[6]   Nanopore-Based Identification of Individual Nucleotides for Direct RNA Sequencing [J].
Ayub, Mariam ;
Hardwick, Steven W. ;
Luisi, Ben F. ;
Bayley, Hagan .
NANO LETTERS, 2013, 13 (12) :6144-6150
[7]   Individual RNA Base Recognition in Immobilized Oligonucleotides Using a Protein Nanopore [J].
Ayub, Mariam ;
Bayley, Hagan .
NANO LETTERS, 2012, 12 (11) :5637-5643
[8]   Single-molecule Spectroscopy using nanoporous membranes [J].
Chansin, Guillaume A. T. ;
Mulero, Rafael ;
Hong, Jongin ;
Kim, Min Jun ;
deMello, Andrew J. ;
Edel, Joshua B. .
NANO LETTERS, 2007, 7 (09) :2901-2906
[9]   Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision [J].
Cherf, Gerald M. ;
Lieberman, Kate R. ;
Rashid, Hytham ;
Lam, Christopher E. ;
Karplus, Kevin ;
Akeson, Mark .
NATURE BIOTECHNOLOGY, 2012, 30 (04) :344-348
[10]  
Clarke J, 2009, NAT NANOTECHNOL, V4, P265, DOI [10.1038/NNANO.2009.12, 10.1038/nnano.2009.12]