Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress

被引:205
作者
Moreno, JI [1 ]
Martín, R [1 ]
Castresana, C [1 ]
机构
[1] CSIC, Ctr Nacl Biotecnol, Campus Univ Autonoma, E-28049 Madrid, Spain
关键词
plant defense; photorespiration; oxidative stress;
D O I
10.1111/j.1365-313X.2004.02311.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
We found that a recessive mutation, shmt1-1, causes aberrant regulation of cell death resulting in chlorotic and necrotic lesion formation under a variety of environmental conditions. Salicylic acid-inducible genes and genes involved in H2O2 detoxification were expressed constitutively in shmt1-1 plants in direct correlation with the severity of the lesions. The shmt1-1 mutants were more susceptible than control plants to infection with biotrophic and necrotrophic pathogens, developing severe infection symptoms in a high percentage of infected leaves. In addition, mutants carrying shmt1-1 or a loss-of-function shmt1-2 allele, were smaller and showed a greater loss of chlorophyll and greater accumulation of H2O2 than wild-type plants when subjected to salt stress. SHMT1 was map-based cloned and found to encode a serine hydroxymetyltransferase (SHMT1) involved in the photorespiratory pathway. Our results indicate that this enzymatic activity plays a critical role in controlling the cell damage provoked by abiotic stresses such as high light and salt and in restricting pathogen-induced cell death, supporting the notion that photorespiration forms part of the dissipatory mechanisms of plants to minimize production of reactive oxygen species (ROS) at the chloroplast and to mitigate oxidative damage. Moreover, results shown here indicate that whereas production of ROS is an essential component of the hypersensitive defense response, the excessive accumulation of these toxic compounds impairs cell death containment and counteracts the effectiveness of the plant defenses to restrict pathogen infection.
引用
收藏
页码:451 / 463
页数:13
相关论文
共 72 条
[1]   Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells [J].
Allan, AC ;
Fluhr, R .
PLANT CELL, 1997, 9 (09) :1559-1572
[2]   Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity [J].
Alvarez, ME ;
Pennell, RI ;
Meijer, PJ ;
Ishikawa, A ;
Dixon, RA ;
Lamb, C .
CELL, 1998, 92 (06) :773-784
[3]   HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family [J].
Balagué, C ;
Lin, BQ ;
Alcon, C ;
Flottes, G ;
Malmström, S ;
Köhler, C ;
Neuhaus, G ;
Pelletier, G ;
Gaymard, F ;
Roby, D .
PLANT CELL, 2003, 15 (02) :365-379
[5]   Photosynthesis and fluorescence quenching, and the mRNA levels of plastidic glutamine synthetase or of mitochondrial serine hydroxymethyltransferase (SHMT) in the leaves of the wild-type and of the SHMT-deficient stm mutant of Arabidopsis thaliana in relation to the rate of photorespiration [J].
Beckmann, K ;
Dzuibany, C ;
Biehler, K ;
Fock, H ;
Hell, R ;
Migge, A ;
Becker, TW .
PLANTA, 1997, 202 (03) :379-386
[6]   Regulation and execution of programmed cell death in response to pathogens, stress and developmental cues [J].
Beers, EP ;
McDowell, JM .
CURRENT OPINION IN PLANT BIOLOGY, 2001, 4 (06) :561-567
[7]   PHOTORESPIRATORY MUTANTS OF THE MITOCHONDRIAL CONVERSION OF GLYCINE TO SERINE [J].
BLACKWELL, RD ;
MURRAY, AJS ;
LEA, PJ .
PLANT PHYSIOLOGY, 1990, 94 (03) :1316-1322
[8]   The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance [J].
Bowling, SA ;
Clarke, JD ;
Liu, YD ;
Klessig, DF ;
Dong, XN .
PLANT CELL, 1997, 9 (09) :1573-1584
[9]  
Castleman A.W., 1990, J CLUST SCI, V1, P3, DOI [10.1007/BF00703584, DOI 10.1007/BF00703584]
[10]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743