Bio-informatic trends for the determination of miRNA-target interactions in mammals

被引:33
作者
Doran, Jonathon [1 ]
Strauss, William M. [1 ]
机构
[1] Univ Colorado, Dept Mol Cellular & DEv Biol, Boulder, CO 80309 USA
关键词
D O I
10.1089/dna.2006.0546
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate mRNAs through a sequence-specific mechanism. By virtue of their structure and mechanism of action, computational methods have been devised to investigate the encoding of miRNA genes and the targets of miRNA action. A variety of assumptions have predicated the implementation of these various computational solutions. Evolutionary sequence conservation, secondary structure, and folding energetics are some of the assumptions that have been used. The success of these different computational solutions has been evaluated for both elucidation of new miRNAs and deducing targets of miRNA action. While the focus is on search techniques for new miRNAs, we have compared the programs miRseeker, miRScan, PalGrade, ProMiR, and miRAlign as examples of implementation of these techniques. For these programs, a benchmark comparison between theoretical estimation and actual identification is possible. We have also compared the target prediction programs TargetScanS, PicTar, DIANA-microT, miRanda, and RNAhybrid. However, it is difficult to rigorously assess the benchmark performance of these programs due to the difficulty in confirming their theoretical predictions.
引用
收藏
页码:353 / 360
页数:8
相关论文
共 59 条
[1]  
*AMB, 2006, BAS NO AN
[2]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[3]   Prediction and validation of microRNAs and their targets [J].
Bentwich, I .
FEBS LETTERS, 2005, 579 (26) :5904-5910
[4]   Identification of hundreds of conserved and nonconserved human microRNAs [J].
Bentwich, I ;
Avniel, A ;
Karov, Y ;
Aharonov, R ;
Gilad, S ;
Barad, O ;
Barzilai, A ;
Einat, P ;
Einav, U ;
Meiri, E ;
Sharon, E ;
Spector, Y ;
Bentwich, Z .
NATURE GENETICS, 2005, 37 (07) :766-770
[5]   Phylogenetic shadowing and computational identification of human microRNA genes [J].
Berezikov, E ;
Guryev, V ;
van de Belt, J ;
Wienholds, E ;
Plasterk, RHA ;
Cuppen, E .
CELL, 2005, 120 (01) :21-24
[6]   Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis [J].
Berezikov, Eugene ;
van Tetering, Geert ;
Verheul, Mark ;
van de Belt, Jose ;
van Laake, Linda ;
Vos, Joost ;
Verloop, Robert ;
van de Wetering, Marc ;
Guryev, Victor ;
Takada, Shuji ;
van Zonneveld, Anton Jan ;
Mano, Hiroyuki ;
Plasterk, Ronald ;
Cuppen, Edwin .
GENOME RESEARCH, 2006, 16 (10) :1289-1298
[7]   Principles of MicroRNA-target recognition [J].
Brennecke, J ;
Stark, A ;
Russell, RB ;
Cohen, SM .
PLOS BIOLOGY, 2005, 3 (03) :404-418
[8]   Prediction and verification of microRNA targets by MovingTargets, a highly adaptable prediction method [J].
Burgler, C ;
Macdonald, PM .
BMC GENOMICS, 2005, 6 (1)
[9]   Improved targeting of miRNA with antisense oligonucleotides [J].
Davis, Scott ;
Lollo, Bridget ;
Freier, Susan ;
Esau, Christine .
NUCLEIC ACIDS RESEARCH, 2006, 34 (08) :2294-2304
[10]   Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions [J].
Didiano, Dominic ;
Hobert, Oliver .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2006, 13 (09) :849-851