Artificial neural network and fragmental approach in prediction of physicochemical properties of organic compounds

被引:20
作者
Artemenko, NV [1 ]
Baskin, II [1 ]
Palyulin, VA [1 ]
Zefirov, NS [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Chem, Moscow 119992, Russia
关键词
artificial neural networks; neural network modeling; viscosity; density; vapor pressure; physicochemical properties; fragmental descriptors; LIQUID VISCOSITY; VAPOR-PRESSURE; PHYSICAL-PROPERTIES; BIOLOGICAL-ACTIVITY; QSPR PREDICTION; DESCRIPTORS; HYDROCARBONS; MODEL;
D O I
10.1023/A:1022467508832
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An approach based on fragmental descriptors (occurrence number of structural fragments in chemical structures) in conjunction with the artificial neural network technique was developed for predicting the physicochemical properties of organic compounds. The construction of neural network models for predicting the viscosity, density, and saturated vapor pressure for various classes of organic compounds is discussed.
引用
收藏
页码:20 / 29
页数:10
相关论文
共 69 条
[41]   Structurally diverse quantitative structure-property relationship correlations of technologically relevant physical properties [J].
Katritzky, AR ;
Maran, U ;
Lobanov, VS ;
Karelson, M .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2000, 40 (01) :1-18
[43]   APPROACHES TO SAR IN CARCINOGENESIS AND MUTAGENESIS - PREDICTION OF CARCINOGENICITY/MUTAGENICITY USING MULTI-CASE [J].
KLOPMAN, G ;
ROSENKRANZ, HS .
MUTATION RESEARCH, 1994, 305 (01) :33-46
[44]  
KOTOVSKAYA SK, 1989, KHIM FARM ZH, V22, P310
[45]   AUTOMATIC FORMATION METHOD FOR STRUCTURAL DESCRIPTORS OF ORGANIC-COMPOUNDS FOR QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIPS [J].
KUMSKOV, MI ;
PONOMAREVA, LA ;
SMOLENSKII, EA ;
MITUSHEV, DF ;
ZEFIROV, NS .
RUSSIAN CHEMICAL BULLETIN, 1994, 43 (08) :1317-1319
[46]   QSPR prediction of vapor pressure from solely theoretically-derived descriptors [J].
Liang, CK ;
Gallagher, DA .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1998, 38 (02) :321-324
[47]  
Lin SH, 1997, J CHEM INF COMP SCI, V37, P1146, DOI 10.1021/ci960107z
[48]  
PETELIN DE, 1992, DOKL AKAD NAUK, V327, P508
[49]   From molecular connectivity indices to semiempirical connectivity terms: Recent trends in graph theoretical descriptors [J].
Pogliani, L .
CHEMICAL REVIEWS, 2000, 100 (10) :3827-3858
[50]   Robustness of biological activity spectra predicting by computer program PASS for noncongeneric sets of chemical compounds [J].
Poroikov, VV ;
Filimonov, DA ;
Borodina, YV ;
Lagunin, AA ;
Kos, A .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2000, 40 (06) :1349-1355