Potential energy functions for protein design

被引:101
作者
Boas, F. Edward [1 ]
Harbury, Pehr B. [1 ]
机构
[1] Stanford Univ, Sch Med, Dept Biochem, Stanford, CA 94305 USA
关键词
D O I
10.1016/j.sbi.2007.03.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Different potential energy functions have predominated in protein dynamics simulations, protein design calculations, and protein structure prediction. Clearly, the same physics applies in all three cases. The differences in potential energy functions reflect differences in how the calculations are performed. With improvements in computer power and algorithms, the same potential energy function should be applicable to all three problems. In this review, we examine energy functions currently used for protein design, and look to the molecular mechanics field for advances that could be used in the next generation of design algorithms. In particular, we focus on improved models of the hydrophobic effect, polarization and hydrogen bonding.
引用
收藏
页码:199 / 204
页数:6
相关论文
共 47 条
[1]   Computational design of a single amino acid sequence that can switch between two distinct protein folds [J].
Ambroggio, XI ;
Kuhlman, B .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (04) :1154-1161
[2]   Computational redesign of endonuclease DNA binding and cleavage specificity [J].
Ashworth, Justin ;
Havranek, James J. ;
Duarte, Carlos M. ;
Sussman, Django ;
Monnat, Raymond J., Jr. ;
Stoddard, Barry L. ;
Baker, David .
NATURE, 2006, 441 (7093) :656-659
[3]   Generalized born models of macromolecular solvation effects [J].
Bashford, D ;
Case, DA .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2000, 51 :129-152
[4]   Statistical potentials extracted from protein structures: Are these meaningful potentials? [J].
BenNaim, A .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (09) :3698-3706
[5]   Importance of accurate charges in molecular docking: Quantum mechanical/molecular mechanical (QM/MM) approach [J].
Cho, AE ;
Guallar, V ;
Berne, BJ ;
Friesner, R .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (09) :915-931
[6]   HYDROPHOBIC BONDING AND ACCESSIBLE SURFACE-AREA IN PROTEINS [J].
CHOTHIA, C .
NATURE, 1974, 248 (5446) :338-339
[7]   On the mechanism of hydrophobic association of nanoscopic solutes [J].
Choudhury, N ;
Pettitt, BM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (10) :3556-3567
[8]   Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design [J].
Clark, LA ;
Boriack-Sjodin, PA ;
Eldredge, J ;
Fitch, C ;
Friedman, B ;
Hanf, KJM ;
Jarpe, M ;
Liparoto, SF ;
Li, Y ;
Lugovskoy, A ;
Miller, S ;
Rushe, M ;
Sherman, W ;
Simon, K ;
Van Vlijmen, H .
PROTEIN SCIENCE, 2006, 15 (05) :949-960
[9]   Probing the role of packing specificity in protein design [J].
Dahiyat, BI ;
Mayo, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (19) :10172-10177
[10]   Automated design of the surface positions of protein helices [J].
Dahiyat, BI ;
Gordon, DB ;
Mayo, SL .
PROTEIN SCIENCE, 1997, 6 (06) :1333-1337