Structural insights into the origins of DNA polymerase fidelity

被引:124
作者
Beard, WA [1 ]
Wilson, SH [1 ]
机构
[1] NIEHS, Struct Biol Lab, NIH, Res Triangle Pk, NC 27709 USA
关键词
D O I
10.1016/S0969-2126(03)00051-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DNA polymerases discriminate from a pool of structurally similar molecules to insert the correct nucleotide to preserve Watson-Crick base pairing rules. The ability to choose between "right and wrong" is highly dependent on the identity of the polymerase. Because naturally occurring polymerases with divergent fidelities insert incorrect nucleotides with comparable efficiencies, fidelity is primarily governed by the ability to insert the correct nucleotide. DNA polymerases generally bind the correct nucleotide with similar affinities, but low-fidelity polymerases insert correct nucleotides more slowly than higher fidelity enzymes. A comparison of crystallographic ternary substrate complexes of DNA polymerases from five families exhibiting a range of nucleotide insertion rates reveals possible structural features that lead to rapid, efficient, and faithful DNA synthesis.
引用
收藏
页码:489 / 496
页数:8
相关论文
共 52 条
[1]   Insight into the catalytic mechanism of DNA polymerase β:: Structures of intermediate complexes [J].
Arndt, JW ;
Gong, WM ;
Zhong, XJ ;
Showalter, AK ;
Liu, J ;
Dunlap, CA ;
Lin, Z ;
Paxson, C ;
Tsai, MD ;
Chan, MK .
BIOCHEMISTRY, 2001, 40 (18) :5368-5375
[2]   DEOXYNUCLEOSIDE TRIPHOSPHATE AND PYROPHOSPHATE BINDING-SITES IN THE CATALYTICALLY COMPETENT TERNARY COMPLEX FOR THE POLYMERASE REACTION CATALYZED BY DNA-POLYMERASE-I (KLENOW FRAGMENT) [J].
ASTATKE, M ;
GRINDLEY, NDF ;
JOYCE, CM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (04) :1945-1954
[3]   Efficiency of correct nucleotide insertion governs DNA polymerase fidelity [J].
Beard, WA ;
Shock, DD ;
Vande Berg, BJ ;
Wilson, SH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (49) :47393-47398
[4]   DNA lesion bypass polymerases open up [J].
Beard, WA ;
Wilson, SH .
STRUCTURE, 2001, 9 (09) :759-764
[5]   Structural insights into DNA polymerase β fidelity:: hold tight if you want it right [J].
Beard, WA ;
Wilson, SH .
CHEMISTRY & BIOLOGY, 1998, 5 (01) :R7-R13
[6]   Structural design of a eukaryotic DNA repair polymerase:: DNA polymerase β [J].
Beard, WA ;
Wilson, SH .
MUTATION RESEARCH-DNA REPAIR, 2000, 460 (3-4) :231-244
[7]   DNA structure and aspartate 276 influence nucleotide binding to human DNA polymerase β -: Implication for the identity of the rate-limiting conformational change [J].
Berg, BJV ;
Beard, WA ;
Wilson, SH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (05) :3408-3416
[8]   Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4):: an archaeal DinB-like DNA polymerase with lesion-bypass properties akin to eukaryotic polη [J].
Boudsocq, F ;
Iwai, S ;
Hanaoka, F ;
Woodgate, R .
NUCLEIC ACIDS RESEARCH, 2001, 29 (22) :4607-4616
[9]   Slow rate of phosphodiester bond formation accounts for the strong bias that Taq DNA polymerase shows against 2',3'-dideoxynucleotide terminators [J].
Brandis, JW ;
Edwards, SG ;
Johnson, KA .
BIOCHEMISTRY, 1996, 35 (07) :2189-2200
[10]   MUTANTS AFFECTING NUCLEOTIDE RECOGNITION BY T7 DNA-POLYMERASE [J].
DONLIN, MJ ;
JOHNSON, KA .
BIOCHEMISTRY, 1994, 33 (49) :14908-14917