Piezoelectric Ribbons Printed onto Rubber for Flexible Energy Conversion

被引:394
作者
Qi, Yi [1 ]
Jafferis, Noah T. [2 ]
Lyons, Kenneth, Jr. [1 ]
Lee, Christine M. [1 ]
Ahmad, Habib [3 ]
McAlpine, Michael C. [1 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[3] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
关键词
Energy conversion; piezoelectric nanoribbons; piezo force microscopy; flexible electronics; bioMEMS; nanomechanics; TITANATE THIN-FILMS; NANOWIRE ARRAYS; ELECTROMECHANICAL PROPERTIES; FERROELECTRIC PROPERTIES; ELECTRONICS; PIEZORESPONSE; COEFFICIENT; NANOSCALE; CERAMICS; SENSORS;
D O I
10.1021/nl903377u
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of a method for integrating highly efficient energy conversion materials onto stretchable, biocompatible rubbers could yield breakthroughs in implantable or wearable energy harvesting systems. Being electromechanically coupled, piezoelectric crystals represent a particularly interesting subset of smart materials that function as sensors/actuators, bioMEMS devices., and energy converters. Yet, the crystallization of these materials generally requires high temperatures for maximally efficient performance, rendering them incompatible with temperature-sensitive plastics and rubbers. Here, we overcome these limitations by presenting a scalable and parallel process for transferring crystalline piezoelectric nanothick ribbons of lead zirconate titanate from host substrates onto flexible rubbers over macroscopic areas. Fundamental characterization of the ribbons by piezo-Force microscopy indicates that their electromechanical energy conversion metrics are among the highest reported on a flexible medium. The excellent performance of the piezo-ribbon assemblies coupled with stretchable, biocompatible rubber may enable a host of exciting avenues in fundamental research and novel applications.
引用
收藏
页码:524 / 528
页数:5
相关论文
共 39 条
[21]   Peptide-nanowire hybrid materials for selective sensing of small molecules [J].
McAlpine, Michael C. ;
Agnew, Heather D. ;
Rohde, Rosemary D. ;
Blanco, Mario ;
Ahmad, Habib ;
Stuparu, Andreea D. ;
Goddard, William A., III ;
Heath, James R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (29) :9583-9589
[22]   Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors [J].
McAlpine, Michael C. ;
Ahmad, Habib ;
Wang, Dunwei ;
Heath, James R. .
NATURE MATERIALS, 2007, 6 (05) :379-384
[23]   Piezoelectric Thin Films for Sensors, Actuators, and Energy Harvesting [J].
Muralt, P. ;
Polcawich, R. G. ;
Trolier-McKinstry, S. .
MRS BULLETIN, 2009, 34 (09) :658-664
[24]   Energy scavenging for mobile and wireless electronics [J].
Paradiso, JA ;
Starner, T .
IEEE PERVASIVE COMPUTING, 2005, 4 (01) :18-27
[25]  
SALAMONE J, 1996, POLYM MAT ENCY, V9
[26]   A uniaxial bioMEMS device for imaging single cell response during quantitative force-displacement measurements [J].
Serrell, David B. ;
Law, Jera ;
Slifka, Andrew J. ;
Mahajan, Roop L. ;
Finch, Dudley S. .
BIOMEDICAL MICRODEVICES, 2008, 10 (06) :883-889
[27]   Energy scavenging with shoe-mounted piezoelectrics [J].
Shenck, NS ;
Paradiso, JA .
IEEE MICRO, 2001, 21 (03) :30-42
[28]   The wafer flexure technique for the determination of the transverse piezoelectric coefficient (d31) of PZT thin films [J].
Shepard, JF ;
Moses, PJ ;
Trolier-McKinstry, S .
SENSORS AND ACTUATORS A-PHYSICAL, 1998, 71 (1-2) :133-138
[29]   Characterization and aging response of the d31 piezoelectric coefficient of lead zirconate titanate thin films [J].
Shepard, JF ;
Chu, F ;
Kanno, I ;
Trolier-McKinstry, S .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (09) :6711-6716
[30]   Piezoelectric/ultrananocrystalline diamond heterostructures for high-performance multifunctional micro/nanoelectromechanical systems [J].
Srinivasan, S. ;
Hiller, J. ;
Kabius, B. ;
Auciello, O. .
APPLIED PHYSICS LETTERS, 2007, 90 (13)