Stretchable and Transparent Electrodes using Hybrid Structures of Graphene-Metal Nanotrough Networks with High Performances and Ultimate Uniformity

被引:158
作者
An, Byeong Wan [1 ]
Hyun, Byung Gwan [1 ]
Kim, So-Yun [1 ]
Kim, Minji [1 ]
Lee, Mi-Sun [1 ]
Lee, Kyongsoo [1 ]
Koo, Jae Bon [3 ]
Chu, Hye Yong [3 ]
Bae, Byeong-Soo [4 ]
Park, Jang-Ung [1 ,2 ]
机构
[1] UNIST, Sch Mat Sci & Engn, Wearable Elect Res Grp, Low Dimens Carbon Mat Res Ctr, Ulsan Metropolitan City 689798, South Korea
[2] UNIST, Sch Energy & Chem Engn, Ulsan Metropolitan City 689798, South Korea
[3] ETRI, Components & Mat Res Lab, Daejeon Metropolitan 305700, South Korea
[4] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Daejeon Metropolitan 305701, South Korea
基金
新加坡国家研究基金会;
关键词
Metal nanotrough; graphene; hybrid; transparent electrodes; stretchable electronics; SOLAR-CELLS; FILMS; NANOWIRES; NANOSTRUCTURES; CONDUCTIVITY; PRESSURE;
D O I
10.1021/nl502755y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transparent electrodes that can maintain their electrical and optical properties stably against large mechanical deformations are essential in numerous applications of flexible and wearable electronics. In this paper, we report a comprehensive analysis of the electrical, optical, and mechanical properties of hybrid nanostructures based on graphene and metal nanotrough networks as stretchable and transparent electrodes. Compared to the single material of graphene or the nanotrough, the formation of this hybrid can improve the uniformity of sheet resistance significantly, that is, a very low sheet resistance (1 Omega/sq) with a standard deviation of less than +/-0.1 Omega/sq, high transparency (91% in the visible light regime), and superb stretchability (80% in tensile strain). The successful demonstration of skin-attachable, flexible, and transparent arrays of oxide semiconductor transistors fabricated using hybrid electrodes suggests substantial promise for the next generation of electronic devices.
引用
收藏
页码:6322 / 6328
页数:7
相关论文
共 46 条
[1]   Spontaneous Formation of Periodic Nanostructures by Localized Dynamic Wrinkling [J].
Ahn, Se Hyun ;
Guo, L. Jay .
NANO LETTERS, 2010, 10 (10) :4228-4234
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[5]   LIGHT-EMITTING-DIODES BASED ON CONJUGATED POLYMERS [J].
BURROUGHES, JH ;
BRADLEY, DDC ;
BROWN, AR ;
MARKS, RN ;
MACKAY, K ;
FRIEND, RH ;
BURN, PL ;
HOLMES, AB .
NATURE, 1990, 347 (6293) :539-541
[6]   Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices [J].
Catrysse, Peter B. ;
Fan, Shanhui .
NANO LETTERS, 2010, 10 (08) :2944-2949
[7]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[8]   The effects of percolation in nanostructured transparent conductors [J].
De, Sukanta ;
Coleman, Jonathan N. .
MRS BULLETIN, 2011, 36 (10) :774-781
[9]   Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios [J].
De, Sukanta ;
Higgins, Thomas M. ;
Lyons, Philip E. ;
Doherty, Evelyn M. ;
Nirmalraj, Peter N. ;
Blau, Werner J. ;
Boland, John J. ;
Coleman, Jonathan N. .
ACS NANO, 2009, 3 (07) :1767-1774
[10]  
Emtsev KV, 2009, NAT MATER, V8, P203, DOI [10.1038/nmat2382, 10.1038/NMAT2382]