Aging and nonergodicity beyond the Khinchin theorem

被引:161
作者
Burov, S. [2 ]
Metzler, R. [1 ]
Barkai, E. [2 ,3 ]
机构
[1] Tech Univ Munich, Dept Phys, D-85747 Garching, Germany
[2] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[3] Bar Ilan Univ, Inst Nanotechnol & Adv Mat, IL-52900 Ramat Gan, Israel
基金
以色列科学基金会;
关键词
anomalous diffusion; ergodicity breaking; single particle trajectories; continuous time random walk; irreversibility; ANOMALOUS DIFFUSION; RANDOM-WALKS; TIME; DYNAMICS; EQUILIBRIUM; STATISTICS; EQUATIONS;
D O I
10.1073/pnas.1003693107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Khinchin theorem provides the condition that a stationary process is ergodic, in terms of the behavior of the corresponding correlation function. Many physical systems are governed by nonstationary processes in which correlation functions exhibit aging. We classify the ergodic behavior of such systems and suggest a possible generalization of Khinchin's theorem. Our work also quantifies deviations from ergodicity in terms of aging correlation functions. Using the framework of the fractional Fokker-Planck equation, we obtain a simple analytical expression for the two-time correlation function of the particle displacement in a general binding potential, revealing universality in the sense that the binding potential only enters into the prefactor through the first two moments of the corresponding Boltzmann distribution. We discuss applications to experimental data from systems exhibiting anomalous dynamics.
引用
收藏
页码:13228 / 13233
页数:6
相关论文
共 62 条
[1]  
Abramowitz M., 1971, Handbook of Mathematical Functions
[2]   AGING PROCESS AND RESPONSE FUNCTION IN SPIN-GLASSES - AN ANALYSIS OF THE THERMOREMANENT MAGNETIZATION DECAY IN AG-MN (2.6-PERCENT) [J].
ALBA, M ;
OCIO, M ;
HAMMANN, J .
EUROPHYSICS LETTERS, 1986, 2 (01) :45-52
[3]   Non-Poisson dichotomous noise: Higher-order correlation functions and aging [J].
Allegrini, P. ;
Grigolini, Paolo ;
Palatella, Luigi ;
West, Bruce J. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (4 2) :046118-1
[4]   Anomalous diffusion of proteins due to molecular crowding [J].
Banks, DS ;
Fradin, C .
BIOPHYSICAL JOURNAL, 2005, 89 (05) :2960-2971
[5]   Non-Markovian Brownian dynamics and nonergodicity -: art. no. 061107 [J].
Bao, JD ;
Hänggi, P ;
Zhuo, YZ .
PHYSICAL REVIEW E, 2005, 72 (06)
[6]   Multi-point distribution function for the continuous time random walk [J].
Barkai, E. ;
Sokolov, I. M. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
[7]   From continuous time random walks to the fractional Fokker-Planck equation [J].
Barkai, E ;
Metzler, R ;
Klafter, J .
PHYSICAL REVIEW E, 2000, 61 (01) :132-138
[8]   Fractional Fokker-Planck equation, solution, and application [J].
Barkai, E .
PHYSICAL REVIEW E, 2001, 63 (04)
[9]   Multipoint fluorescence quenching-time statistics for single molecules with anomalous diffusion [J].
Barsegov, V ;
Mukamel, S .
JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (01) :15-24
[10]   A fractional diffusion equation for two-point probability distributions of a continuous-time random walk [J].
Baule, A. ;
Friedrich, R. .
EPL, 2007, 77 (01)