Multi-point distribution function for the continuous time random walk

被引:28
作者
Barkai, E. [1 ]
Sokolov, I. M.
机构
[1] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[2] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2007年
关键词
stochastic particle dynamics (theory); slow dynamics and ageing (theory); nonequilibrium. fluctuations in small systems; probability theory;
D O I
10.1088/1742-5468/2007/08/P08001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We derive an explicit expression for the Fourier - Laplace transform of the two- point distribution function p( x(1), t(1); x(2), t(2)) of a continuous time random walk ( CTRW), thus generalizing the result of Montroll and Weiss for the singlepoint distribution function p( x(1), t(1)). The multi- point distribution function has a structure of a convolution of the Montroll - Weiss CTRW and the ageing CTRW single- point distribution functions. The correlation function x( t(1)) x( t(2)) for the biased CTRW process is found. The random walk foundation of the multi- time space fractional diffusion equation is investigated using the unbiased CTRW in the continuum limit.
引用
收藏
页数:11
相关论文
共 27 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   Non-Poisson dichotomous noise: Higher-order correlation functions and aging [J].
Allegrini, P. ;
Grigolini, Paolo ;
Palatella, Luigi ;
West, Bruce J. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (4 2) :046118-1
[3]   From continuous time random walks to the fractional Fokker-Planck equation [J].
Barkai, E ;
Metzler, R ;
Klafter, J .
PHYSICAL REVIEW E, 2000, 61 (01) :132-138
[4]   Aging in subdiffusion generated by a deterministic dynamical system [J].
Barkai, E .
PHYSICAL REVIEW LETTERS, 2003, 90 (10) :4
[5]   Aging continuous time random walks [J].
Barkai, E ;
Cheng, YC .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (14) :6167-6178
[6]   Multipoint fluorescence quenching-time statistics for single molecules with anomalous diffusion [J].
Barsegov, V ;
Mukamel, S .
JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (01) :15-24
[7]   A fractional diffusion equation for two-point probability distributions of a continuous-time random walk [J].
Baule, A. ;
Friedrich, R. .
EPL, 2007, 77 (01)
[8]   Joint probability distributions for a class of non-Markovian processes [J].
Baule, A ;
Friedrich, R .
PHYSICAL REVIEW E, 2005, 71 (02)
[9]   Random walk to a nonergodic equilibrium concept [J].
Bel, G ;
Barkai, E .
PHYSICAL REVIEW E, 2006, 73 (01)
[10]   Weak ergodicity breaking in the continuous-time random walk [J].
Bel, G ;
Barkai, E .
PHYSICAL REVIEW LETTERS, 2005, 94 (24)