Linear dependency between ε and-the input noise in ε-support vector regression

被引:54
作者
Kwok, JT [1 ]
Tsang, IW [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2003年 / 14卷 / 03期
关键词
support vector machines (SVMs); support vector regression;
D O I
10.1109/TNN.2003.810604
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In using the epsilon-support vector regression (epsilon-SVR) algorithm, one has to decide a suitable value for the insensitivity parameter epsilon. Smola et al. considered its "optimal" choice by studying the statistical efficiency in a location parameter estimation problem. While they successfully predicted a linear scaling between the optimal epsilon and the noise in the data, their theoretically optimal value does not have a close match with its experimentally observed counterpart in the case of Gaussian noise. In this paper, we attempt to better explain their experimental results by studying the regression problem itself. Our resultant predicted choice of epsilon is much closer to the experimentally observed optimal value, while again demonstrating a linear trend with the input noise.
引用
收藏
页码:544 / 553
页数:10
相关论文
共 24 条
  • [11] A PRACTICAL BAYESIAN FRAMEWORK FOR BACKPROPAGATION NETWORKS
    MACKAY, DJC
    [J]. NEURAL COMPUTATION, 1992, 4 (03) : 448 - 472
  • [12] Robust linear and support vector regression
    Mangasarian, OL
    Musicant, DR
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (09) : 950 - 955
  • [13] An introduction to kernel-based learning algorithms
    Müller, KR
    Mika, S
    Rätsch, G
    Tsuda, K
    Schölkopf, B
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (02): : 181 - 201
  • [14] MULLER KR, 1997, P INT C ART NEUR NET, P999
  • [15] Sparse correlation kernel reconstruction
    Papageorgiou, C
    Girosi, F
    Poggio, T
    [J]. ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 1633 - 1636
  • [16] Poggio T., 1989, THEORY NETWORKS APPR
  • [17] Pontil M., 1998, On the noise model of support vector machine regression
  • [18] New support vector algorithms
    Schölkopf, B
    Smola, AJ
    Williamson, RC
    Bartlett, PL
    [J]. NEURAL COMPUTATION, 2000, 12 (05) : 1207 - 1245
  • [19] Scholkopf B., 1998, ADV KERNEL METHODS S
  • [20] Smola A, 1999, IEE CONF PUBL, P575, DOI 10.1049/cp:19991171