EUV engineering test stand

被引:43
作者
Tichenor, DA [1 ]
Kubiak, GD [1 ]
Replogle, WC [1 ]
Klebanoff, LE [1 ]
Wronosky, JB [1 ]
Hale, LC [1 ]
Chapman, HN [1 ]
Taylor, JS [1 ]
Folta, JA [1 ]
Montcalm, C [1 ]
Hudyma, RM [1 ]
Goldberg, KA [1 ]
Naulleau, P [1 ]
机构
[1] Sandia Natl Labs, Livermore, CA 94551 USA
来源
EMERGING LITHOGRAPHIC TECHNOLOGIES IV | 2000年 / 3997卷
关键词
EUVL; lithography; multilayers coatings; optical fabrication; optical design; laser-produced plasma; laser plasma source; maglev; magnetic levitation; stages; precision engineering;
D O I
10.1117/12.390083
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Engineering Test Stand (ETS) is an EUV laboratory lithography tool. The purpose of the ETS is to demonstrate EUV full-field imaging and provide data required to support production-tool development. The ETS is configured to separate the imaging system and stages from the illumination system. Environmental conditions can be controlled independently in the two modules to maximize EUV throughput and environmental control. A source of 13.4 nm radiation is provided by a laser plasma source in which a YAG laser beam is focused onto a xenon-cluster target. A condenser system, comprised of multilayer-coated mirrors and grazing-incidence mirrors, collects the EUV radiation and directs it onto a reflecting reticle. A four-mirror, ring-field optical system, having a numerical aperture of 0.1, projects a 4x-reduction image onto the wafer plane. This design corresponds to a resolution of 70nm at a k(1) of 0.52. The ETS is designed to produce full-field images in step-and-scan mode using vacuum-compatible, one-dimension-long-travel magnetically levitated stages for both reticle and wafer. Reticle protection is incorporated into the ETS design. This paper provides a system overview of the ETS design and specifications.
引用
收藏
页码:48 / 69
页数:22
相关论文
共 17 条
[1]  
CAMPBELL G, 1996, OSA ANN M EXH OCT 20
[2]  
Chapman H N, 1999, US, Patent No. 5973826
[3]   A rigorous method for compensation selection and alignment of microlithographic optical systems [J].
Chapman, HN ;
Sweeney, DW .
EMERGING LITHOGRAPHIC TECHNOLOGIES II, 1998, 3331 :102-113
[4]   Massively parallel simulations of Brownian dynamics particle transport in low pressure parallel-plate reactors [J].
Choi, SJ ;
Rader, DJ ;
Geller, AS .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1996, 14 (02) :660-665
[5]   Sub-100-nm lithographic imaging with an EUV 10x microstepper [J].
Goldsmith, JEM ;
Berger, KW ;
Bozman, DR ;
Cardinale, GF ;
Folk, DR ;
Henderson, CC ;
O'Connell, DJ ;
Ray-Chaudhuri, AK ;
Stewart, KD ;
Tichenor, DA ;
Chapman, HN ;
Gaughan, R ;
Hudyma, RM ;
Montcalm, C ;
Spiller, EA ;
Taylor, JS ;
Williams, JD ;
Goldberg, KA ;
Gullikson, EM ;
Naulleau, P ;
Cobb, JL .
EMERGING LITHOGRAPHIC TECHNOLOGIES III, PTS 1 AND 2, 1999, 3676 :264-271
[6]   Scattering from normal incidence EUV optics [J].
Gullikson, EM .
EMERGING LITHOGRAPHIC TECHNOLOGIES II, 1998, 3331 :72-80
[7]   High-power source and illumination system for extreme ultraviolet lithography [J].
Kubiak, GD ;
Bernardez, LJ ;
Krenz, K ;
Replogle, WC ;
Sweatt, WC ;
Sweeney, DW ;
Hudyma, RM ;
Shields, H .
EUV, X-RAY, AND NEUTRON OPTICS AND SOURCES, 1999, 3767 :136-142
[8]   Scale-up of a cluster jet laser plasma source for Extreme Ultraviolet Lithography [J].
Kubiak, GD ;
Bernardez, LJ ;
Krenz, K ;
Sweatt, WC .
EMERGING LITHOGRAPHIC TECHNOLOGIES III, PTS 1 AND 2, 1999, 3676 :669-678
[9]   Multilayer reflective coatings for extreme-ultraviolet lithography [J].
Montcalm, C ;
Bajt, S ;
Mirkarimi, PB ;
Spiller, E ;
Weber, FJ ;
Folta, JA .
EMERGING LITHOGRAPHIC TECHNOLOGIES II, 1998, 3331 :42-51
[10]   Multilayer coated optics for an alpha-class extreme ultraviolet lithography system [J].
Montcalm, C ;
Grabner, RF ;
Hudyma, RM ;
Schmidt, MA ;
Spiller, E ;
Walton, CC ;
Wedowski, M ;
Folta, JA .
EUV, X-RAY, AND NEUTRON OPTICS AND SOURCES, 1999, 3767 :210-216