Galaxy Zoo: reproducing galaxy morphologies via machine learning☆

被引:147
作者
Banerji, Manda [1 ,2 ]
Lahav, Ofer [1 ]
Lintott, Chris J. [3 ]
Abdalla, Filipe B. [1 ]
Schawinski, Kevin [4 ,5 ]
Bamford, Steven P. [6 ]
Andreescu, Dan [7 ]
Murray, Phil [8 ]
Raddick, M. Jordan [9 ]
Slosar, Anze [10 ,11 ]
Szalay, Alex [9 ]
Thomas, Daniel [12 ]
Vandenberg, Jan [9 ]
机构
[1] UCL, Dept Phys & Astron, London WC1E 6BT, England
[2] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England
[3] Univ Oxford, Dept Phys, Oxford OX1 3RH, England
[4] Yale Univ, Dept Phys, New Haven, CT 06511 USA
[5] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA
[6] Univ Nottingham, Sch Phys & Astron, Ctr Astron & Particle Theory, Nottingham NG7 2RD, England
[7] LinkLab, Bronx, NY 10471 USA
[8] Fingerprint Digital Media, Newtownards BT23 7GY, Co Down, North Ireland
[9] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[10] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA
[11] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[12] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2EG, Hants, England
关键词
methods: data analysis; galaxies: general; DIGITAL-SKY-SURVEY; ARTIFICIAL NEURAL-NETWORKS; ESTIMATING PHOTOMETRIC REDSHIFTS; AUTOMATED CLASSIFICATION; STELLAR SPECTRA; COLOR;
D O I
10.1111/j.1365-2966.2010.16713.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present morphological classifications obtained using machine learning for objects in the Sloan Digital Sky Survey DR6 that have been classified by Galaxy Zoo into three classes, namely early types, spirals and point sources/artefacts. An artificial neural network is trained on a subset of objects classified by the human eye, and we test whether the machine-learning algorithm can reproduce the human classifications for the rest of the sample. We find that the success of the neural network in matching the human classifications depends crucially on the set of input parameters chosen for the machine-learning algorithm. The colours and parameters associated with profile fitting are reasonable in separating the objects into three classes. However, these results are considerably improved when adding adaptive shape parameters as well as concentration and texture. The adaptive moments, concentration and texture parameters alone cannot distinguish between early type galaxies and the point sources/artefacts. Using a set of 12 parameters, the neural network is able to reproduce the human classifications to better than 90 per cent for all three morphological classes. We find that using a training set that is incomplete in magnitude does not degrade our results given our particular choice of the input parameters to the network. We conclude that it is promising to use machine-learning algorithms to perform morphological classification for the next generation of wide-field imaging surveys and that the Galaxy Zoo catalogue provides an invaluable training set for such purposes.
引用
收藏
页码:342 / 353
页数:12
相关论文
共 29 条
  • [1] Photometric redshifts for weak lensing tomography from space: the role of optical and near infrared photometry
    Abdalla, F. B.
    Amara, A.
    Capak, P.
    Cypriano, E. S.
    Lahav, O.
    Rhodes, J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 387 (03) : 969 - 986
  • [2] Automated classification of stellar spectra - II. Two-dimensional classification with neural networks and principal components analysis
    Bailer-Jones, CAL
    Irwin, M
    von Hippel, T
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1998, 298 (02) : 361 - 377
  • [3] Quantifying the bimodal color-magnitude distribution of galaxies
    Baldry, IK
    Glazebrook, K
    Brinkmann, J
    Ivezic, Z
    Lupton, RH
    Nichol, RC
    Szalay, AS
    [J]. ASTROPHYSICAL JOURNAL, 2004, 600 (02) : 681 - 694
  • [4] Galaxy types in the Sloan Digital Sky Survey using supervised artificial neural networks
    Ball, NM
    Loveday, J
    Fukugita, M
    Nakamura, O
    Okamura, S
    Brinkmann, J
    Brunner, RJ
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 348 (03) : 1038 - 1046
  • [5] Galaxy Zoo: the dependence of morphology and colour on environment
    Bamford, Steven P.
    Nichol, Robert C.
    Baldry, Ivan K.
    Land, Kate
    Lintott, Chris J.
    Schawinski, Kevin
    Slosar, Anze
    Szalay, Alexander S.
    Thomas, Daniel
    Torki, Mehri
    Andreescu, Dan
    Edmondson, Edward M.
    Miller, Christopher J.
    Murray, Phil
    Raddick, M. Jordan
    Vandenberg, Jan
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 393 (04) : 1324 - 1352
  • [6] Banerji M, 2008, MON NOT R ASTRON SOC, V386, P1219, DOI [10.1111/j.1365-2966.2008.13095.x, 10.1111/J.1365-2966.2008.13095.X]
  • [7] Shapes and shears, stars and smears: Optimal measurements for weak lensing
    Bernstein, GM
    Jarvis, M
    [J]. ASTRONOMICAL JOURNAL, 2002, 123 (02) : 583 - 618
  • [8] Bishop CM., 1995, NEURAL NETWORKS PATT
  • [9] ANNz:: Estimating photometric redshifts using artificial neural networks
    Collister, AA
    Lahav, O
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2004, 116 (818) : 345 - 351
  • [10] Galaxy Zoo: the fraction of merging galaxies in the SDSS and their morphologies
    Darg, D. W.
    Kaviraj, S.
    Lintott, C. J.
    Schawinski, K.
    Sarzi, M.
    Bamford, S.
    Silk, J.
    Proctor, R.
    Andreescu, D.
    Murray, P.
    Nichol, R. C.
    Raddick, M. J.
    Slosar, A.
    Szalay, A. S.
    Thomas, D.
    Vandenberg, J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 401 (02) : 1043 - 1056