Energy Dissipation and Transport in Nanoscale Devices

被引:975
作者
Pop, Eric [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Micro & Nanotechnol Lab & Beckman Inst, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Nanowire; nanotube; interface; thermal transport; rectification; thermoelectric; power dissipation; THERMAL-BOUNDARY RESISTANCE; MONTE-CARLO; HEAT-FLOW; PHONON TRANSPORT; ELECTRON-TRANSPORT; SOI MOSFETS; HOT-PHONON; SILICON; CONDUCTANCE; CONDUCTIVITY;
D O I
10.1007/s12274-010-1019-z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding energy dissipation and transport in nanoscale structures is of great importance for the design of energy-efficient circuits and energy-conversion systems. This is also a rich domain for fundamental discoveries at the intersection of electron, lattice (phonon), and optical (photon) interactions. This review presents recent progress in understanding and manipulation of energy dissipation and transport in nanoscale solid-state structures. First, the landscape of power usage from nanoscale transistors (similar to 10(-8) W) to massive data centers (similar to 10(9) W) is surveyed. Then, focus is given to energy dissipation in nanoscale circuits, silicon transistors, carbon nanostructures, and semiconductor nanowires. Concepts of steady-state and transient thermal transport are also reviewed in the context of nanoscale devices with sub-nanosecond switching times. Finally, recent directions regarding energy transport are reviewed, including electrical and thermal conductivity of nanostructures, thermal rectification, and the role of ubiquitous material interfaces.
引用
收藏
页码:147 / 169
页数:23
相关论文
共 164 条
[21]  
Clemente S., 1993, IEEE Transactions on Power Electronics, V8, P337, DOI 10.1109/63.261001
[22]   Thermal conductance of epitaxial interfaces [J].
Costescu, RM ;
Wall, MA ;
Cahill, DG .
PHYSICAL REVIEW B, 2003, 67 (05)
[23]   Local electron heating in nanoscale conductors [J].
D'Agosta, Roberto ;
Sai, Na ;
Di Ventra, Massimiliano .
NANO LETTERS, 2006, 6 (12) :2935-2938
[24]   1ω, 2ω, and 3ω methods for measurements of thermal properties -: art. no. 124902 [J].
Dames, C ;
Chen, G .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (12) :1-14
[25]   Solid-State Thermal Rectification With Existing Bulk Materials [J].
Dames, C. .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2009, 131 (06) :1-7
[26]   Accurate determination of thermal resistance of FETs [J].
Darwish, AM ;
Bayba, AJ ;
Hung, HA .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2005, 53 (01) :306-313
[27]   Landauer formula without Landauer's assumptions [J].
Das, MP ;
Green, F .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (45) :L687-L693
[28]  
Datta S., 1997, Electronic transport in mesoscopic systems, DOI DOI 10.1063/1.2807624
[29]  
Datta S., 2006, QUANTUM TRANSPORT AT
[30]   Spatially Resolved Temperature Measurements of Electrically Heated Carbon Nanotubes [J].
Deshpande, Vikram V. ;
Hsieh, Scott ;
Bushmaker, Adam W. ;
Bockrath, Marc ;
Cronin, Stephen B. .
PHYSICAL REVIEW LETTERS, 2009, 102 (10)