Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating

被引:782
作者
Liang, Zheng [1 ]
Lin, Dingchang [1 ]
Zhao, Jie [1 ]
Lu, Zhenda [1 ]
Liu, Yayuan [1 ]
Liu, Chong [1 ]
Lu, Yingying [1 ]
Wang, Haotian [2 ]
Yan, Kai [1 ]
Tao, Xinyong [1 ]
Cui, Yi [1 ,3 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Appl Phys, Stanford, CA 94305 USA
[3] Standford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
关键词
Li composite; Li metal anode; melt infusion; 3D scaffold; lithiophilic; ION BATTERY ANODES; LONG CYCLE-LIFE; HOLLOW CARBON; SECONDARY BATTERIES; SULFUR CATHODES; LIQUID; ELECTROLYTES; ALLOY; ELECTRODEPOSITION; NANOSPHERES;
D O I
10.1073/pnas.1518188113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lithium metal-based battery is considered one of the best energy storage systems due to its high theoretical capacity and lowest anode potential of all. However, dendritic growth and virtually relative infinity volume change during long-term cycling often lead to severe safety hazards and catastrophic failure. Here, a stable lithium-scaffold composite electrode is developed by lithium melt infusion into a 3D porous carbon matrix with "lithiophilic" coating. Lithium is uniformly entrapped on the matrix surface and in the 3D structure. The resulting composite electrode possesses a high conductive surface area and excellent structural stability upon galvanostatic cycling. We showed stable cycling of this composite electrode with small Li plating/stripping overpotential (<90 mV) at a high current density of 3 mA/cm(2) over 80 cycles.
引用
收藏
页码:2862 / 2867
页数:6
相关论文
共 35 条
[1]   LONG CYCLE-LIFE SECONDARY LITHIUM CELLS UTILIZING TETRAHYDROFURAN [J].
ABRAHAM, KM ;
FOOS, JS ;
GOLDMAN, JL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1984, 131 (09) :2197-2199
[2]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[3]   Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode [J].
Bieker, Georg ;
Winter, Martin ;
Bieker, Peter .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (14) :8670-8679
[4]   High capacity Li ion battery anodes using Ge nanowires [J].
Chan, Candace K. ;
Zhang, Xiao Feng ;
Cui, Yi .
NANO LETTERS, 2008, 8 (01) :307-309
[5]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[6]   Dendrite-Free Nanostructured Anode: Entrapment of Lithium in a 3D Fibrous Matrix for Ultra-Stable Lithium-Sulfur Batteries [J].
Cheng, Xin-Bing ;
Peng, Hong-Jie ;
Huang, Jia-Qi ;
Wei, Fei ;
Zhang, Qiang .
SMALL, 2014, 10 (21) :4257-4263
[7]   Lithium Silicide Nanocrystals: Synthesis, Chemical Stability, Thermal Stability, and Carbon Encapsulation [J].
Cloud, Jacqueline E. ;
Wang, Yonglong ;
Li, Xuemin ;
Yoder, Tara S. ;
Yang, Yuan ;
Yang, Yongan .
INORGANIC CHEMISTRY, 2014, 53 (20) :11289-11297
[8]   Li-B Alloy as Anode Material for Lithium/Sulfur Battery [J].
Duan, Bochao ;
Wang, Weikun ;
Zhao, Hailei ;
Wang, Anbang ;
Wang, Mengjia ;
Yuan, Keguo ;
Yu, Zhongbao ;
Yang, Yusheng .
ECS ELECTROCHEMISTRY LETTERS, 2013, 2 (06) :A47-A51
[9]   Wetting properties of liquid lithium on select fusion relevant surfaces [J].
Fiflis, P. ;
Press, A. ;
Xu, W. ;
Andruczyk, D. ;
Curreli, D. ;
Ruzic, D. N. .
FUSION ENGINEERING AND DESIGN, 2014, 89 (12) :2827-2832
[10]   IN-SITU SCANNING VIBRATING ELECTRODE TECHNIQUE FOR THE CHARACTERIZATION OF INTERFACE BETWEEN LITHIUM ELECTRODE AND ELECTROLYTES CONTAINING ADDITIVES [J].
ISHIKAWA, M ;
YOSHITAKE, S ;
MORITA, M ;
MATSUDA, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (12) :L159-L161