Mott transition of the f-electron system in the periodic Anderson model with nearest neighbor hybridization

被引:29
作者
Held, K [1 ]
Bulla, R [1 ]
机构
[1] Univ Augsburg, D-86135 Augsburg, Germany
关键词
D O I
10.1007/s100510070154
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We show analytically that, under certain assumptions, the periodic Anderson model and the Hubbard model become equivalent within the dynamical mean field theory for quasiparticle weight Z --> 0. A scaling relation is derived which is validated numerically using the numerical renormalization group at zero temperature and quantum Monte Carlo simulations at finite temperatures. Our results show that the f-electrons of the half-filled periodic Anderson model with nearest neighbor hybridization get localized at a finite critical interaction strength U-c, also at zero temperature. This transition is equivalent to the Mott-transition in the Hubbard model.
引用
收藏
页码:7 / 10
页数:4
相关论文
共 25 条
[11]   SYMMETRICAL PERIODIC ANDERSON MODEL IN INFINITE DIMENSIONS [J].
JARRELL, M .
PHYSICAL REVIEW B, 1995, 51 (12) :7429-7440
[12]  
JARRELL M, 1997, NUMERICAL METHODS LA
[13]   RENORMALIZATION-GROUP APPROACH TO THE ANDERSON MODEL OF DILUTE MAGNETIC-ALLOYS .1. STATIC PROPERTIES FOR THE SYMMETRIC CASE [J].
KRISHNAMURTHY, HR ;
WILKINS, JW ;
WILSON, KG .
PHYSICAL REVIEW B, 1980, 21 (03) :1003-1043
[14]   CORRELATED LATTICE FERMIONS IN D=INFINITY DIMENSIONS [J].
METZNER, W ;
VOLLHARDT, D .
PHYSICAL REVIEW LETTERS, 1989, 62 (03) :324-327
[15]   CRITICAL-BEHAVIOR NEAR THE MOTT TRANSITION IN THE HUBBARD-MODEL [J].
MOELLER, G ;
SI, QM ;
KOTLIAR, G ;
ROZENBERG, M .
PHYSICAL REVIEW LETTERS, 1995, 74 (11) :2082-2085
[16]  
PRUSCHKE T, COMMUNICATION
[17]   Finite temperature Mott transition in the Hubbard model in infinite dimensions [J].
Rozenberg, MJ ;
Chitra, R ;
Kotliar, G .
PHYSICAL REVIEW LETTERS, 1999, 83 (17) :3498-3501
[18]   ZERO-TEMPERATURE MAGNETISM IN THE PERIODIC ANDERSON MODEL IN THE LIMIT OF LARGE DIMENSIONS [J].
ROZENBERG, MJ .
PHYSICAL REVIEW B, 1995, 52 (10) :7369-7377
[19]   Absence of hysteresis at the Mott-Hubbard metal-insulator transition in infinite dimensions [J].
Schlipf, J ;
Jarrell, M ;
van Dongen, PGJ ;
Blümer, N ;
Kehrein, S ;
Pruschke, T ;
Vollhardt, D .
PHYSICAL REVIEW LETTERS, 1999, 82 (24) :4890-4893
[20]   Protracted screening in the periodic Anderson model [J].
TahvildarZadeh, AN ;
Jarrell, M .
PHYSICAL REVIEW B, 1997, 55 (06) :R3332-R3335