Exact form of Green functions for segmented potentials

被引:24
作者
da Luz, MGE [1 ]
Heller, EJ
Cheng, BK
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[3] Univ Fed Parana, Dept Fis, BR-81531970 Curitiba, Parana, Brazil
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1998年 / 31卷 / 13期
关键词
D O I
10.1088/0305-4470/31/13/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive the exact Green functions for segmented potentials, i.e. for potentials of the form V(x) = Sigma(j=1)(N) V-(j)(x), where each V-(j)(x) has compact support. The expressions depend explicitly on the wavefunctions' quantum amplitudes (e.g. transmission and reflection coefficients) for the individual V-(j)'s. We also show that the exact Green functions are in fact generalizations of the usual semiclassical formula. Finally, the possibility of applying the method to a general potential is briefly discussed.
引用
收藏
页码:2975 / 2990
页数:16
相关论文
共 45 条
[1]   A FACTORIZATION OF THE SCATTERING MATRIX FOR THE SCHRODINGER-EQUATION AND FOR THE WAVE-EQUATION IN ONE DIMENSION [J].
AKTOSUN, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (11) :3865-3869
[2]   NEW METHOD FOR A SCALING THEORY OF LOCALIZATION [J].
ANDERSON, PW ;
THOULESS, DJ ;
ABRAHAMS, E ;
FISHER, DS .
PHYSICAL REVIEW B, 1980, 22 (08) :3519-3526
[3]  
[Anonymous], 1989, INVERSE PROBLEMS QUA
[4]   RESONANCES AND OSCILLATIONS IN TUNNELING IN A TIME-DEPENDENT POTENTIAL [J].
AZBEL, MY .
PHYSICAL REVIEW B, 1991, 43 (08) :6847-6850
[5]   GREENS-FUNCTION AND PROPAGATOR FOR THE ONE-DIMENSIONAL DELTA-FUNCTION POTENTIAL [J].
BLINDER, SM .
PHYSICAL REVIEW A, 1988, 37 (03) :973-976
[6]   NON-RELATIVISTIC COULOMB GREEN-FUNCTION IN PARABOLIC-COORDINATES [J].
BLINDER, SM .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (02) :306-311
[7]   EXACT PROPAGATOR FOR A 2-DIMENSIONAL INVERSE QUADRATIC OSCILLATOR INTERACTING WITH A WEDGE [J].
CHENG, BK ;
DALUZ, MGE .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (07) :2033-2042
[8]   THE 2-DIMENSIONAL HARMONIC-OSCILLATOR INTERACTING WITH A WEDGE [J].
CHENG, BK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (24) :5807-5814
[9]  
CHENG BK, IN PRESS
[10]  
Coddington EA., 1955, Theory of Differential Equations